排列数公式: A n m = n × ( n − 1 ) × . . . × ( n − m + 1 ) = n ! ( n − m ) ! A_n^m = n×(n-1)×...×(n-m+1) = \frac{n!}{(n-m)!} Anm=n×(n−1)×...×(n−m+1)=(n−m)!n!
组合数公式: C n m = n × ( n − 1 ) × . . . × ( n − m + 1 ) m × ( m − 1 ) × . . . × 1 = n ! m ! ( n − m ) ! C_n^m = \frac{n×(n-1)×...×(n-m+1)}{m×(m-1)×...×1} = \frac{n!}{m!\space(n-m)!} Cnm=m×(m−1)×...×1n×(n−1)×...×(n−m+1)=m! (n−m)!n!
代码实现#include
using namespace std;
typedef long long ll;
ll A (int n, int m) {
ll res = 1;
for (int i = 0;i n >> m;
cout
关注
打赏