目录
1 环境搭建
2 需要的文件
2.1 pykitti中的默认的文件位置
2.2 preprocess | 运行 kitti_maps.py 需要的文件
2.3 preprocess | 运行 kitti_maps.py 生成的文件
2.4 Training | 运行 main_visibility_CALIB.py 需要的文件
2.5 Evaluation | 运行 evaluate_iterative_single_CALIB.py 需要的文件
3 运行命令
- 论文笔记_S2D.52_CMRNet++:在激光雷达地图中进行内参未知的相机的单目视觉定位
- 开源代码位置: https://github.com/cattaneod/CMRNet
- 1. conda create -n py36env_name python=3.6
- 2. https://github.com/cattaneod/CMRNet 在项目文件夹下执行pip install -r requirements.txt
(设置 "data_folder=./KITTI_ODOMETRY/sequences"时)-----
2.1 pykitti中的默认的文件位置- self.sequence_path: ./KITTI_ODOMETRY/sequences/00/
- 对应pose_file: ./KITTI_ODOMETRY/poses/00 .txt
- self.velo_files: ./KITTI_ODOMETRY/sequences/00/velodyne/*.bin
- 矫正文件: ./KITTI_ODOMETRY/sequences/00/calib.txt
- 激光数据: /KITTI_ODOMETRY/sequences/00/velodyne/*.bin
- 位姿数据: ./data/kitti-00.csv
- 单个局部地图: ./KITTI_ODOMETRY/sequences/00/local_maps_0.1/000xxx.h5
- 序列的全局地图: ./map-00_0.1_0-4541.pcd
- 位姿数据: ./KITTI_ODOMETRY/sequences/00/poses.csv
- 图像文件: ./KITTI_ODOMETRY/sequences/00/image_2/00xxx.png
- 对应的h5文件: ./KITTI_ODOMETRY/sequences/00/velodyne/00xxx.h5
- 运行结果: 生成文件./checkpoints/kitti/00/checkpoint_r10.00_t2.00_e2_1.200.tar
- ./KITTI_ODOMETRY/sequences/test_RT_seq00_10.00_2.00.csv
- ./checkpoints/kitti/00/checkpoint_r10.00_t2.00_e2_1.200.tar
预处理 preprocess:
python preprocess/kitti_maps.py --sequence 00 --kitti_folder ./KITTI_ODOMETRY/sequences
Training:
python main_visibility_CALIB.py with batch_size=24 data_folder=./KITTI_ODOMETRY/sequences epochs=300 max_r=10 max_t=2 BASE_LEARNING_RATE=0.0001 savemodel=./checkpoints/ test_sequence=00
Evaluation:
python evaluate_iterative_single_CALIB.py with test_sequence=00 maps_folder=local_maps data_folder=./KITTI_ODOMETRY/sequences weight="['./checkpoints/kitti/00/checkpoint_r10.00_t2.00_e2_1.200.tar']"