《The Arithmetic of Elliptic Curves by Silverman 2nd Edition》书中定义为:
如对于Curve25519,其Montgomery form为: v 2 = u 3 + 486662 u 2 + u , q = 2 255 − 19 v^2=u^3+486662u^2+u, q=2^{255}-19 v2=u3+486662u2+u,q=2255−19 对应的Edwards curve表示为: x 2 + y 2 = 1 + ( 121665 / 121666 ) x 2 y 2 x^2+y^2=1+(121665/121666)x^2y^2 x2+y2=1+(121665/121666)x2y2 相互之间的变换关系为: ( x , y ) ↦ ( u , v ) : u = ( 1 + y ) / ( 1 − y ) , v = 486664 u / x (x,y)\mapsto (u,v): u=(1+y)/(1-y),v=\sqrt{486664}u/x (x,y)↦(u,v):u=(1+y)/(1−y),v=486664 u/x ( u , v ) ↦ ( x , y ) : x = 486664 u / v , y = ( u − 1 ) / ( u + 1 ) (u,v)\mapsto (x,y): x=\sqrt{486664}u/v,y=(u-1)/(u+1) (u,v)↦(x,y):x=486664 u/v,y=(u−1)/(u+1)
可以说Montgomery form和Edwards curve之间为isogeny。
2.2 Edwards与Jacobi Quartic curve之间的同源性。Jacobi Quartic curve具有如下形式: J e , A : = { ( s , t ) ∈ P 2 ( F ) : t 2 = e s 4 + 2 A s 2 + 1 } J_{e,A}:=\{(s,t)\in P^2(F): t^2=es^4+2As^2+1\} Je,A:={(s,t)∈P2(F):t2=es4+2As2+1} 当取 e = a 2 , A = 2 a − d e=a^2,A=2a-d e=a2,A=2a−d时,对应的形式为: J a 2 , 2 a − d : = { ( s , t ) ∈ P 2 ( F ) : t 2 = a 2 s 4 + 2 ( 2 a − d ) s 2 + 1 } J_{a^2,2a-d}:=\{(s,t)\in P^2(F): t^2=a^2s^4+2(2a-d)s^2+1\} Ja2,2a−d:={(s,t)∈P2(F):t2=a2s4+2(2a−d)s2+1}
通用的Twisted Edwards curve表示为: ε a , d = { ( x , y ) ∈ P 2 ( F ) : a x 2 + y 2 = 1 + d x 2 y 2 } \varepsilon_{a,d}=\{(x,y)\in P^2(F):ax^2+y^2=1+dx^2y^2\} εa,d={(x,y)∈P2(F):ax2+y2=1+dx2y2}
相互之前的转换关系为: ( s , t ) ↦ ( x , y ) : x = 2 s / ( 1 + a s 2 ) , y = ( 1 − a s 2 ) / t (s,t)\mapsto (x,y): x=2s/(1+as^2),y=(1-as^2)/t (s,t)↦(x,y):x=2s/(1+as2),y=(1−as2)/t ( x , y ) ↦ ( s , t ) : s = x / y , t = ( 2 − y 2 − a x 2 ) / y 2 (x,y)\mapsto (s,t): s=x/y,t=(2-y^2-ax^2)/y^2 (x,y)↦(s,t):s=x/y,t=(2−y2−ax2)/y2
因此Jacobi Quartic curve J e , A J_{e,A} Je,A和Twisted Edwards curve ε a , d \varepsilon_{a,d} εa,d也具有同源性。
对于Jacobi quartic curve:
书《A Crash Course In Group Theory (Version 1.0)》中有:
参考资料: [1] 书《The Arithmetic of Elliptic Curves by Silverman 2nd Edition》 [2] https://ristretto.group/details/curve_models.html [3] 书《A Crash Course In Group Theory (Version 1.0)》