Laurent polynomial劳伦特多项式的系数 p k p_k pk, p k ∈ F p_k\in F pk∈F,F为域, k k k为整数(可为正数和负数),具体可表示为: p = ∑ k p k X k = p − k X − k + p − ( k − 1 ) X − ( k − 1 ) + . . . + p 0 + p 1 X + . . . + p k X k p=\sum_{k} p_kX^k=p_{-k}X^{-k}+p_{-(k-1)}X^{-(k-1)}+...+p_0+p_1X+...+p_kX^k p=∑kpkXk=p−kX−k+p−(k−1)X−(k−1)+...+p0+p1X+...+pkXk
Laurent polynomial劳伦特多项式具有如下加法和乘法特性:
- ( ∑ i a i X i ) + ( ∑ i b i X i ) = ∑ i ( a i + b i ) X i (\sum_{i}a_iX^i)+(\sum_{i}b_iX^i)=\sum_{i}(a_i+b_i)X^i (∑iaiXi)+(∑ibiXi)=∑i(ai+bi)Xi
-
(
∑
i
a
i
X
i
)
⋅
(
∑
j
b
j
X
j
)
=
∑
k
(
∑
i
<
=
k
,
j
;
j
=
k
−
i
a
i
b
j
)
X
k
(\sum_{i}a_iX^i)\cdot (\sum_{j}b_jX^j)=\sum_{k}(\sum_{i
关注打赏