您当前的位置: 首页 >  ar

mutourend

暂无认证

  • 1浏览

    0关注

    661博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

Efficient Zero-Knowledge Argument for Correctness of a Shuffle学习笔记(2)

mutourend 发布时间:2020-04-22 12:04:54 ,浏览量:1

Stephanie Bayer和Jens Groth 2012年论文《Efficient Zero-Knowledge Argument for Correctness of a Shuffle》中提出了shuffle argument算法,该算法主要由Multi-exponentiation Argument和product argument两部分组成。 在博客 Efficient Zero-Knowledge Argument for Correctness of a Shuffle学习笔记(1)中介绍了Shuffle argument总体算法以及Multi-exponentiation Argument算法,在本博客中,将重点介绍product argument算法。

1. 背景知识

Witness 向量 A = { a i j } i , j = 1 n , m A=\{a_{ij}\}_{i,j=1}^{n,m} A={aij​}i,j=1n,m​,以矩阵方式表示: A = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n m ) = ( a ⃗ 1 , a ⃗ 2 , ⋯   , a ⃗ m ) A=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}=(\vec{a}_1,\vec{a}_2,\cdots,\vec{a}_m) A=⎝⎜⎜⎛​a11​a21​⋯an1​​a12​a22​⋯an2​​⋯⋯⋯⋯​a1m​a2m​⋯anm​​⎠⎟⎟⎞​=(a 1​,a 2​,⋯,a m​)

Public info for both Prover AND Verifier,对 A A A的每列向量 a i ⃗ \vec{a_i} ai​ ​分别进行commit: c ⃗ A = c o m c k ( A ; r ⃗ ) = ( c o m c k ( a ⃗ 1 ; r 1 ) , ⋯   , c o m c k ( a ⃗ m ; r m ) ) \vec{c}_A=com_{ck}(A;\vec{r})=(com_{ck}(\vec{a}_1;r_1),\cdots,com_{ck}(\vec{a}_m;r_m)) c A​=comck​(A;r )=(comck​(a 1​;r1​),⋯,comck​(a m​;rm​)) 需证明 b = ∏ i = 1 n ∏ j = 1 m a i j = ∏ i = 1 n ( ∏ j = 1 m a i j ) b=\prod_{i=1}^{n}\prod_{j=1}^{m}a_{ij}=\prod_{i=1}^{n}(\prod_{j=1}^{m}a_{ij}) b=∏i=1n​∏j=1m​aij​=∏i=1n​(∏j=1m​aij​)。

思路如下: 构建新的向量 b ⃗ = ( ∏ j = 1 m a 1 j , ⋯   , ∏ j = 1 m a n j ) = ( b 1 , ⋯   , b n ) \vec{b}=(\prod_{j=1}^{m}a_{1j},\cdots,\prod_{j=1}^{m}a_{nj})=(b_1,\cdots,b_n) b =(∏j=1m​a1j​,⋯,∏j=1m​anj​)=(b1​,⋯,bn​),对该向量进行commit: c b = c o m c k ( b 1 , ⋯   , b n ; s ) c_b=com_{ck}(b_1,\cdots,b_n;s) cb​=comck​(b1​,⋯,bn​;s)。从而将证明 b = ∏ i = 1 n ∏ j = 1 m a i j = ∏ i = 1 n ( ∏ j = 1 m a i j ) b=\prod_{i=1}^{n}\prod_{j=1}^{m}a_{ij}=\prod_{i=1}^{n}(\prod_{j=1}^{m}a_{ij}) b=∏i=1n​∏j=1m​aij​=∏i=1n​(∏j=1m​aij​)拆分为了两组证明: 1)证明Prover知道相应的witness a 11 , ⋯   , a n m a_{11},\cdots,a_{nm} a11​,⋯,anm​,使得 c b = c o m c k ( b 1 , ⋯   , b n ; s ) = c o m c k ( ∏ j = 1 m a 1 j , ⋯   , ∏ j = 1 m a n j ; s ) c_b=com_{ck}(b_1,\cdots,b_n;s)=com_{ck}(\prod_{j=1}^{m}a_{1j},\cdots,\prod_{j=1}^{m}a_{nj};s) cb​=comck​(b1​,⋯,bn​;s)=comck​(∏j=1m​a1j​,⋯,∏j=1m​anj​;s)成立。【使用后续要介绍的Hadamard product argument及zero argument实现】 2)当 c b = c o m c k ( b 1 , ⋯   , b n ; s ) c_b=com_{ck}(b_1,\cdots,b_n;s) cb​=comck​(b1​,⋯,bn​;s),证明 b = ∏ i = 1 n b i b=\prod_{i=1}^{n}b_i b=∏i=1n​bi​成立。【使用后续要介绍的Single value product argument实现】

2. Hadamard product argument

证明Prover知道相应的witness a 11 , ⋯   , a n m a_{11},\cdots,a_{nm} a11​,⋯,anm​,使得 c b = c o m c k ( b 1 , ⋯   , b n ; s ) = c o m c k ( ∏ j = 1 m a 1 j , ⋯   , ∏ j = 1 m a n j ; s ) c_b=com_{ck}(b_1,\cdots,b_n;s)=com_{ck}(\prod_{j=1}^{m}a_{1j},\cdots,\prod_{j=1}^{m}a_{nj};s) cb​=comck​(b1​,⋯,bn​;s)=comck​(∏j=1m​a1j​,⋯,∏j=1m​anj​;s)成立。 可进一步转换为: (1)Witness: a 11 , ⋯   , a n m a_{11},\cdots,a_{nm} a11​,⋯,anm​以及 b 1 , ⋯   , b n b_1,\cdots,b_n b1​,⋯,bn​。

(2)Public info for both Prover AND Verifier:

  • 对 A A A的每列向量 a i ⃗ \vec{a_i} ai​ ​分别进行commit: c ⃗ A = c o m c k ( A ; r ⃗ ) = ( c o m c k ( a ⃗ 1 ; r 1 ) , ⋯   , c o m c k ( a ⃗ m ; r m ) ) \vec{c}_A=com_{ck}(A;\vec{r})=(com_{ck}(\vec{a}_1;r_1),\cdots,com_{ck}(\vec{a}_m;r_m)) c A​=comck​(A;r )=(comck​(a 1​;r1​),⋯,comck​(a m​;rm​))
  • c b = c o m c k ( b ⃗ ; s ) = c o m c k ( b 1 , ⋯   , b n ; s ) c_b=com_{ck}(\vec{b};s)=com_{ck}(b_1,\cdots,b_n;s) cb​=comck​(b ;s)=comck​(b1​,⋯,bn​;s)

(3)待证明: b i = ∏ j = 1 m a i j b_i=\prod_{j=1}^{m}a_{ij} bi​=∏j=1m​aij​或 b ⃗ = ( b 1 , ⋯   , b n ) = ∏ i = 1 m a ⃗ i \vec{b}=(b_1,\cdots,b_n)=\prod_{i=1}^{m}\vec{a}_i b =(b1​,⋯,bn​)=∏i=1m​a i​,其中 ∏ i = 1 m \prod_{i=1}^{m} ∏i=1m​代表的即为entry-wise multiplication,即对应为Hadamard product证明。

思路如下:

  • Prover构建新的矩阵 B = ( b ⃗ 1 , ⋯   , b ⃗ m ) B=(\vec{b}_1,\cdots,\vec{b}_m) B=(b 1​,⋯,b m​),其中 b ⃗ 1 = a ⃗ 1 , b ⃗ 2 = ∏ i = 1 2 a ⃗ i , ⋯   , b ⃗ m − 1 = ∏ i = 1 m − 1 a ⃗ i , b ⃗ m = ∏ i = 1 m a ⃗ i \vec{b}_1=\vec{a}_1,\vec{b}_2=\prod_{i=1}^{2}\vec{a}_i,\cdots,\vec{b}_{m-1}=\prod_{i=1}^{m-1}\vec{a}_i,\vec{b}_m=\prod_{i=1}^{m}\vec{a}_i b 1​=a 1​,b 2​=∏i=12​a i​,⋯,b m−1​=∏i=1m−1​a i​,b m​=∏i=1m​a i​。 Prover对矩阵 B B B的每一列进行commit: c ⃗ B = c o m c k ( B ; s ⃗ ) = ( c o m c k ( b ⃗ 1 ; s 1 ) , ⋯   , c o m c k ( b ⃗ m ; s m ) ) = ( c B 1 , ⋯   , c B m ) \vec{c}_B=com_{ck}(B;\vec{s})=(com_{ck}(\vec{b}_1;s_1),\cdots,com_{ck}(\vec{b}_m;s_m))=(c_{B_1},\cdots,c_{B_m}) c B​=comck​(B;s )=(comck​(b 1​;s1​),⋯,comck​(b m​;sm​))=(cB1​​,⋯,cBm​​) 同时要求 c B 1 = c A 1 c_{B_1}=c_{A_1} cB1​​=cA1​​且 c b = c B m c_b=c_{B_m} cb​=cBm​​,使得 b ⃗ 1 = a ⃗ 1 \vec{b}_1=\vec{a}_1 b 1​=a 1​及 b ⃗ m = b ⃗ \vec{b}_m=\vec{b} b m​=b 成立。 这样Prover的证明内容就改为证明:for each i = 1 , ⋯   , m − 1 i=1,\cdots,m-1 i=1,⋯,m−1, b ⃗ i + 1 = a ⃗ i + 1 b ⃗ i \vec{b}_{i+1}=\vec{a}_{i+1}\vec{b}_i b i+1​=a i+1​b i​成立,因为有 b ⃗ 1 = a ⃗ 1 \vec{b}_1=\vec{a}_1 b 1​=a 1​及 b ⃗ m = b ⃗ \vec{b}_m=\vec{b} b m​=b ,从而可证明 b ⃗ = ∏ i = 1 m a ⃗ i \vec{b}=\prod_{i=1}^{m}\vec{a}_i b =∏i=1m​a i​成立。

  • Verifier->Prover: challenge x x x;

  • 改为证明: b ⃗ i + 1 = a ⃗ i + 1 b ⃗ i ⇒ ∑ i = 1 m − 1 x i b ⃗ i + 1 = ∑ i = 1 m − 1 a ⃗ i + 1 ( x i b ⃗ i ) \vec{b}_{i+1}=\vec{a}_{i+1}\vec{b}_i\Rightarrow \sum_{i=1}^{m-1}x^i\vec{b}_{i+1}=\sum_{i=1}^{m-1}\vec{a}_{i+1}(x^i\vec{b}_i) b i+1​=a i+1​b i​⇒∑i=1m−1​xib i+1​=∑i=1m−1​a i+1​(xib i​)。 收到challenge x x x后,Prover构建新的矩阵 D ′ = ( d ⃗ 1 , d ⃗ 2 , ⋯   , d ⃗ m − 1 , d ⃗ ) = ( x b ⃗ 1 , x 2 b ⃗ 2 , ⋯   , x m − 1 b ⃗ m − 1 , ∑ i = 1 m − 1 x i b ⃗ i + 1 ) D^{'}=(\vec{d}_1,\vec{d}_2,\cdots,\vec{d}_{m-1},\vec{d})=(x\vec{b}_1,x^2\vec{b}_2,\cdots,x^{m-1}\vec{b}_{m-1},\sum_{i=1}^{m-1}x^i\vec{b}_{i+1}) D′=(d 1​,d 2​,⋯,d m−1​,d )=(xb 1​,x2b 2​,⋯,xm−1b m−1​,∑i=1m−1​xib i+1​),其中 d ⃗ = ∑ i = 1 m − 1 x i b ⃗ i + 1 \vec{d}=\sum_{i=1}^{m-1}x^i\vec{b}_{i+1} d =∑i=1m−1​xib i+1​。 Prover对矩阵 D ′ D^{'} D′的每列进行commit,可根据矩阵 B B B commit的同态属性获得: for i = 1 , ⋯   , m − 1 i=1,\cdots,m-1 i=1,⋯,m−1,有 c D i = c B i x i c_{D_i}=c_{B_i}^{x^i} cDi​​=cBi​xi​。 i = m i=m i=m时对应有 c D = ∏ i = 1 m − 1 c B i + 1 x i c_D=\prod_{i=1}^{m-1}c_{B_{i+1}}^{x^i} cD​=∏i=1m−1​cBi+1​xi​

  • 使用如上committed值,改为证明 d ⃗ = ∑ i = 1 m − 1 x i b ⃗ i + 1 = ∑ i = 1 m − 1 a ⃗ i + 1 ( x i b ⃗ i ) = ∑ i = 1 m − 1 a ⃗ i + 1 d ⃗ i \vec{d}=\sum_{i=1}^{m-1}x^i\vec{b}_{i+1}=\sum_{i=1}^{m-1}\vec{a}_{i+1}(x^i\vec{b}_i)=\sum_{i=1}^{m-1}\vec{a}_{i+1}\vec{d}_i d =∑i=1m−1​xib i+1​=∑i=1m−1​a i+1​(xib i​)=∑i=1m−1​a i+1​d i​成立。

  • Verifier->Prover: challenge y y y;

  • 改为证明: d ⃗ = ∑ i = 1 m − 1 a ⃗ i + 1 d ⃗ i ⇒ 0 = ∑ i = 1 m − 1 a ⃗ i + 1 ∗ d ⃗ i − 1 ⃗ ∗ d ⃗ \vec{d}=\sum_{i=1}^{m-1}\vec{a}_{i+1}\vec{d}_i\Rightarrow 0=\sum_{i=1}^{m-1}\vec{a}_{i+1}*\vec{d}_i-\vec{1}*\vec{d} d =∑i=1m−1​a i+1​d i​⇒0=∑i=1m−1​a i+1​∗d i​−1 ∗d 【此时需要使用后续将介绍的zero argument来证明】,其中 ∗ * ∗操作符代表的是bilinear map: 在这里插入图片描述 总的算法思路如下: 在这里插入图片描述

注意:为了证明 0 = ∑ i = 1 m − 1 a ⃗ i + 1 ∗ d ⃗ i − 1 ⃗ ∗ d ⃗ = ∑ i = 1 m − 1 a ⃗ i + 1 ∗ d ⃗ i − 1 ⃗ ∗ d ⃗ m 0=\sum_{i=1}^{m-1}\vec{a}_{i+1}*\vec{d}_i-\vec{1}*\vec{d}=\sum_{i=1}^{m-1}\vec{a}_{i+1}*\vec{d}_i-\vec{1}*\vec{d}_m 0=∑i=1m−1​a i+1​∗d i​−1 ∗d =∑i=1m−1​a i+1​∗d i​−1 ∗d m​【因为构建的矩阵 D ′ D^{'} D′中有 d ⃗ m = d ⃗ = ∑ i = 1 m − 1 x i b ⃗ i + 1 \vec{d}_m=\vec{d}=\sum_{i=1}^{m-1}x^i\vec{b}_{i+1} d m​=d =∑i=1m−1​xib i+1​】 所以,可借助下一节zero argument的思路,按如下方式构建: 引入随机向量 d ⃗ m + 1 ← Z q n \vec{d}_{m+1}\leftarrow \mathbb{Z}_q^n d m+1​←Zqn​,commitment to d ⃗ m + 1 \vec{d}_{m+1} d m+1​: (          a ⃗ 1              a ⃗ 2 ⋯             a ⃗ m          − 1 ⃗ ) ( d 1 ⃗ d 2 ⃗ ⋮ d ⃗ m d ⃗ m + 1 ) ( a ⃗ 1 ∗ d ⃗ 1 a ⃗ 2 ∗ d ⃗ 1 ⋱ a ⃗ m ∗ d ⃗ 1 − 1 ⃗ ∗ d ⃗ 1 a ⃗ 1 ∗ d ⃗ 2 a ⃗ 2 ∗ d ⃗ 2 ⋱ a ⃗ m ∗ d ⃗ 2 − 1 ⃗ ∗ d ⃗ 2 ⋱ ⋱ ⋱ ⋱ ⋱ a ⃗ 1 ∗ d ⃗ m a ⃗ 2 ∗ d ⃗ m ⋱ a ⃗ m ∗ d ⃗ m − 1 ⃗ ∗ d ⃗ m a ⃗ 1 ∗ d ⃗ m + 1 a ⃗ 2 ∗ d ⃗ m + 1 ⋱ a ⃗ m ∗ d ⃗ m + 1 − 1 ⃗ ∗ d ⃗ m + 1 ) d 2 m d 2 m − 1 ⋮ d m + 1 d m          d 0              d 1 ⋯             d m − 1          d m \begin{matrix} & \begin{pmatrix} \ \ \ \ \ \ \ \ \vec{a}_1& \ \ \ \ \ \ \ \ \ \ \ \ \vec{a}_2 & \cdots &\ \ \ \ \ \ \ \ \ \ \ \vec{a} _{m}&\ \ \ \ \ \ \ \ -\vec{1} \end{pmatrix} & \\ \begin{pmatrix} \vec{d_1}\\ \vec{d_2}\\ \vdots\\ \vec{d}_{m}\\ \vec{d}_{m+1} \end{pmatrix} & \begin{pmatrix} \vec{a}_1*{\vec{d}_1}& \vec{a}_2*{\vec{d}_1} & \ddots & \vec{a}_{m}*{\vec{d}_1} & -\vec{1}*{\vec{d}_1}\\ \vec{a}_1*{\vec{d}_2}& \vec{a}_2*{\vec{d}_2} & \ddots & \vec{a}_{m}*{\vec{d}_2} & -\vec{1}*{\vec{d}_2}\\ \ddots & \ddots & \ddots & \ddots & \ddots\\ \vec{a}_1*{\vec{d}_{m}}& \vec{a}_2*{\vec{d}_{m}} & \ddots & \vec{a}_{m}*{\vec{d}_{m}} & -\vec{1}*{\vec{d}_{m}}\\ \vec{a}_1*{\vec{d}_{m+1}}& \vec{a}_2*{\vec{d}_{m+1}} & \ddots & \vec{a}_{m}*{\vec{d}_{m+1}} & -\vec{1}*{\vec{d}_{m+1}} \end{pmatrix} & \begin{matrix} \\ d_{2m}\\ d_{2m-1}\\ \vdots\\ d_{m+1}\\ d_m \end{matrix} \\ & \begin{matrix} \ \ \ \ \ \ \ \ d_0 &\ \ \ \ \ \ \ \ \ \ \ \ d_1 & \cdots & \ \ \ \ \ \ \ \ \ \ \ d_{m-1} & \ \ \ \ \ \ \ \ d_m \end{matrix}& \end{matrix} ⎝⎜⎜⎜⎜⎜⎜⎛​d1​ ​d2​ ​⋮d m​d m+1​​⎠⎟⎟⎟⎟⎟⎟⎞​​(        a 1​​            a 2​​⋯​           a m​​        −1 ​)⎝⎜⎜⎜⎜⎜⎛​a 1​∗d 1​a 1​∗d 2​⋱a 1​∗d m​a 1​∗d m+1​​a 2​∗d 1​a 2​∗d 2​⋱a 2​∗d m​a 2​∗d m+1​​⋱⋱⋱⋱⋱​a m​∗d 1​a m​∗d 2​⋱a m​∗d m​a m​∗d m+1​​−1 ∗d 1​−1 ∗d 2​⋱−1 ∗d m​−1 ∗d m+1​​⎠⎟⎟⎟⎟⎟⎞​        d0​​            d1​​⋯​           dm−1​​        dm​​​d2m​d2m−1​⋮dm+1​dm​​​

详细的实现参见https://github.com/3for/verifiable-shuffle中的round_7a()round_9b()中的代码。 3. zero argument

Witness: a ⃗ 1 , b ⃗ 0 , ⋯   , a ⃗ m , b ⃗ m − 1 \vec{a}_1,\vec{b}_0,\cdots,\vec{a}_m,\vec{b}_{m-1} a 1​,b 0​,⋯,a m​,b m−1​。 Public info: commitment to a ⃗ 1 , b ⃗ 0 , ⋯   , a ⃗ m , b ⃗ m − 1 \vec{a}_1,\vec{b}_0,\cdots,\vec{a}_m,\vec{b}_{m-1} a 1​,b 0​,⋯,a m​,b m−1​。 证明: 0 = ∑ i = 1 m a ⃗ i ∗ b ⃗ i − 1 0=\sum_{i=1}^{m}\vec{a}_i*\vec{b}_{i-1} 0=∑i=1m​a i​∗b i−1​

  • Prover: 随机选择 a ⃗ 0 , b ⃗ m ← Z q n \vec{a}_0,\vec{b}_m\leftarrow \mathbb{Z}_q^n a 0​,b m​←Zqn​,commitment to a ⃗ 0 \vec{a}_0 a 0​和 b ⃗ m \vec{b}_m b m​。

(          a ⃗ 0              a ⃗ 1 ⋯             a ⃗ m − 1          a ⃗ m ) ( b 0 ⃗ b 1 ⃗ ⋮ b ⃗ m − 1 b ⃗ m ) ( a ⃗ 0 ∗ b ⃗ 0 a ⃗ 1 ∗ b ⃗ 0 ⋱ a ⃗ m − 1 ∗ b ⃗ 0 a ⃗ m ∗ b ⃗ 0 a ⃗ 0 ∗ b ⃗ 1 a ⃗ 1 ∗ b ⃗ 1 ⋱ a ⃗ m − 1 ∗ b ⃗ 1 a ⃗ m ∗ b ⃗ 1 ⋱ ⋱ ⋱ ⋱ ⋱ a ⃗ 0 ∗ b ⃗ m − 1 a ⃗ 1 ∗ b ⃗ m − 1 ⋱ a ⃗ m − 1 ∗ b ⃗ m − 1 a ⃗ m ∗ b ⃗ m − 1 a ⃗ 0 ∗ b ⃗ m a ⃗ 1 ∗ b ⃗ m ⋱ a ⃗ m − 1 ∗ b ⃗ m a ⃗ m ∗ b ⃗ m ) d 2 m d 2 m − 1 ⋮ d m + 1 d m          d 0              d 1 ⋯             d m − 1          d m \begin{matrix} & \begin{pmatrix} \ \ \ \ \ \ \ \ \vec{a}_0& \ \ \ \ \ \ \ \ \ \ \ \ \vec{a}_1 & \cdots &\ \ \ \ \ \ \ \ \ \ \ \vec{a} _{m-1}&\ \ \ \ \ \ \ \ \vec{a}_m \end{pmatrix} & \\ \begin{pmatrix} \vec{b_0}\\ \vec{b_1}\\ \vdots\\ \vec{b}_{m-1}\\ \vec{b}_m \end{pmatrix} & \begin{pmatrix} \vec{a}_0*{\vec{b}_0}& \vec{a}_1*{\vec{b}_0} & \ddots & \vec{a}_{m-1}*{\vec{b}_0} & \vec{a}_m*{\vec{b}_0}\\ \vec{a}_0*{\vec{b}_1}& \vec{a}_1*{\vec{b}_1} & \ddots & \vec{a}_{m-1}*{\vec{b}_1} & \vec{a}_m*{\vec{b}_1}\\ \ddots & \ddots & \ddots & \ddots & \ddots\\ \vec{a}_0*{\vec{b}_{m-1}}& \vec{a}_1*{\vec{b}_{m-1}} & \ddots & \vec{a}_{m-1}*{\vec{b}_{m-1}} & \vec{a}_m*{\vec{b}_{m-1}}\\ \vec{a}_0*{\vec{b}_m}& \vec{a}_1*{\vec{b}_m} & \ddots & \vec{a}_{m-1}*{\vec{b}_m} & \vec{a}_m*{\vec{b}_m} \end{pmatrix} & \begin{matrix} \\ d_{2m}\\ d_{2m-1}\\ \vdots\\ d_{m+1}\\ d_m \end{matrix} \\ & \begin{matrix} \ \ \ \ \ \ \ \ d_0 &\ \ \ \ \ \ \ \ \ \ \ \ d_1 & \cdots & \ \ \ \ \ \ \ \ \ \ \ d_{m-1} & \ \ \ \ \ \ \ \ d_m \end{matrix}& \end{matrix} ⎝⎜⎜⎜⎜⎜⎜⎛​b0​ ​b1​ ​⋮b m−1​b m​​⎠⎟⎟⎟⎟⎟⎟⎞​​(        a 0​​            a 1​​⋯​           a m−1​​        a m​​)⎝⎜⎜⎜⎜⎜⎛​a 0​∗b 0​a 0​∗b 1​⋱a 0​∗b m−1​a 0​∗b m​​a 1​∗b 0​a 1​∗b 1​⋱a 1​∗b m−1​a 1​∗b m​​⋱⋱⋱⋱⋱​a m−1​∗b 0​a m−1​∗b 1​⋱a m−1​∗b m−1​a m−1​∗b m​​a m​∗b 0​a m​∗b 1​⋱a m​∗b m−1​a m​∗b m​​⎠⎟⎟⎟⎟⎟⎞​        d0​​            d1​​⋯​           dm−1​​        dm​​​d2m​d2m−1​⋮dm+1​dm​​​

有:for k = 0 , ⋯   , 2 m k=0,\cdots,2m k=0,⋯,2m, d k = ∑ 0 ≤ i , j ≤ m ; j = ( m − k ) + i a ⃗ i ∗ b ⃗ j d_k=\sum_{0\leq i,j\leq m; j=(m-k)+i}{\vec{a}_i*\vec{b}_j} dk​=∑0≤i,j≤m;j=(m−k)+i​a i​∗b j​,从而转为证明 d m + 1 = ∑ i = 1 m a ⃗ i ∗ b ⃗ i − 1 = 0 d_{m+1}=\sum_{i=1}^{m}{\vec{a}_i}*\vec{b}_{i-1}=0 dm+1​=∑i=1m​a i​∗b i−1​=0。

  • Prover:commit to d k d_k dk​为 c D k c_{D_k} cDk​​,其中 c D m + 1 = c o m c k ( 0 ; 0 ) c_{D_{m+1}}=com_{ck}(0;0) cDm+1​​=comck​(0;0)从而让verifier可确定 d m + 1 = 0 d_{m+1}=0 dm+1​=0。

  • Verifier给Prover:challenge x x x

因为: ∑ k = 0 2 m d k x k = ( ∑ i = 0 m x i a ⃗ i ) ∗ ( ∑ j = 0 m x m − j b ⃗ j ) \sum_{k=0}^{2m}d_kx^k=(\sum_{i=0}^{m}x^i\vec{a}_i)*(\sum_{j=0}^{m}x^{m-j}\vec{b}_j) ∑k=02m​dk​xk=(∑i=0m​xia i​)∗(∑j=0m​xm−jb j​)

  • Prover:计算 a ⃗ = ∑ i = 0 m x i a ⃗ i \vec{a}=\sum_{i=0}^{m}x^i\vec{a}_i a =∑i=0m​xia i​和 b ⃗ = ∑ j = 0 m x m − j b ⃗ j \vec{b}=\sum_{j=0}^{m}x^{m-j}\vec{b}_j b =∑j=0m​xm−jb j​,将 a ⃗ \vec{a} a 和 b ⃗ \vec{b} b 发送给Verifier。

  • Verifier:利用commitment的同态性,只需验证 ∏ k = 0 2 m c D k x k = c o m c k ( a ⃗ ∗ b ⃗ ; t ) \prod_{k=0}^{2m}c_{D_k}^{x^k}=com_{ck}(\vec{a}*\vec{b};t) ∏k=02m​cDk​xk​=comck​(a ∗b ;t)成立。由于 d m + 1 = 0 d_{m+1}=0 dm+1​=0,则相应地基于 x x x的多项式其 x m + 1 x^{m+1} xm+1系数为0,则可证明 0 = ∑ i = 1 m a ⃗ i ∗ b ⃗ i − 1 0=\sum_{i=1}^{m}\vec{a}_i*\vec{b}_{i-1} 0=∑i=1m​a i​∗b i−1​。

整个zero argument算法流程如下:在这里插入图片描述

4. Single value product argument

采用的是 J.Groth 2010年论文《A verifiable secret shuffle of homomorphic encryptions》中的算法实现。(结合博客A Verifiable Secret Shuffle of Homomorphic Encryptions学习笔记 中第2节“shuffle of known contents 明文shuffle证明”思路来理解。) Common input: commit key c k ck ck, b , c a b, c_a b,ca​ Witness: a 1 , ⋯   , a n , r a_1,\cdots,a_n,r a1​,⋯,an​,r 证明: c a = c o m c k ( a 1 , ⋯   , a n ; r ) c_a=com_{ck}(a_1,\cdots,a_n;r) ca​=comck​(a1​,⋯,an​;r)且 b = ∏ i = 1 n a i b=\prod_{i=1}^{n}a_i b=∏i=1n​ai​

主要分为两层证明: 1)证明knowledge of opening a 1 , ⋯   , a n , r a_1,\cdots,a_n,r a1​,⋯,an​,r of c a c_a ca​。借助sigma-protocol思路:

  • Prove:commit to random d 1 , ⋯   , d n d_1,\cdots,d_n d1​,⋯,dn​, c d = c o m c k ( d 1 , ⋯   , d n ; r d ) c_d=com_{ck}(d_1,\cdots,d_n;r_d) cd​=comck​(d1​,⋯,dn​;rd​)。Prover将 c d c_d cd​发送给Verifier。
  • Verifier:Challenge x x x。
  • Prover:for i = 1 , ⋯   , n i=1,\cdots,n i=1,⋯,n,计算 a ~ i = x a i + d i \tilde{a}_i=xa_i+d_i a~i​=xai​+di​, r ~ = x r + r d \tilde{r}=xr+r_d r~=xr+rd​。Prover将 a ~ 1 , ⋯   , a ~ n , r ~ \tilde{a}_1,\cdots,\tilde{a}_n,\tilde{r} a~1​,⋯,a~n​,r~ 发送给Verifier。
  • Verifier:验证 c a x c d = c o m c k ( a ~ 1 , ⋯   , a ~ n ; r ~ ) c_a^xc_d=com_{ck}(\tilde{a}_1,\cdots,\tilde{a}_n; \tilde{r}) cax​cd​=comck​(a~1​,⋯,a~n​;r~)成立,即完成证明knowledge of opening a 1 , ⋯   , a n , r a_1,\cdots,a_n,r a1​,⋯,an​,r of c a c_a ca​。

2)为证明 b = ∏ i = 1 n a i b=\prod_{i=1}^{n}a_i b=∏i=1n​ai​,构建向量 b 1 = a 1 , b 2 = a 1 a 2 , ⋯   , b n = ∏ i = 1 n a i b_1=a_1,b_2=a_1a_2,\cdots,b_n=\prod_{i=1}^{n}a_i b1​=a1​,b2​=a1​a2​,⋯,bn​=∏i=1n​ai​,转为在不暴露 b 1 , ⋯   , b n b_1,\cdots,b_n b1​,⋯,bn​和 a 1 , ⋯   , a n a_1,\cdots,a_n a1​,⋯,an​的基础上,证明 b i + 1 = b i a i + 1 b_{i+1}=b_ia_{i+1} bi+1​=bi​ai+1​。不暴露 b 1 , ⋯   , b n b_1,\cdots,b_n b1​,⋯,bn​可采用与不暴露 a 1 , ⋯   , a n a_1,\cdots,a_n a1​,⋯,an​类似的方法:Prover引入随机值 δ 1 , ⋯   , δ n \delta_1,\cdots,\delta_n δ1​,⋯,δn​,计算 b ~ i = x b i + δ i \tilde{b}_i=xb_i+\delta_i b~i​=xbi​+δi​,限定 δ 1 = d 1 , δ n = 0 \delta_1=d_1,\delta_n=0 δ1​=d1​,δn​=0,从而有 b ~ 1 = a ~ 1 , b ~ n = x b \tilde{b}_1=\tilde{a}_1,\tilde{b}_n=xb b~1​=a~1​,b~n​=xb。然后转为证明,for i = 1 , ⋯   , n − 1 i=1,\cdots,n-1 i=1,⋯,n−1 Prover知道 x b ~ i + 1 − b ~ i a ~ i + 1 x\tilde{b}_{i+1}-\tilde{b}_i\tilde{a}_{i+1} xb~i+1​−b~i​a~i+1​的差值。由于 x b ~ i + 1 − b ~ i a ~ i + 1 = ( b i + 1 − b i a i + 1 ) x 2 + ( δ i + 1 − a i + 1 δ i − b i d i + 1 ) x − δ i d i + 1 x\tilde{b}_{i+1}-\tilde{b}_i\tilde{a}_{i+1}=(b_{i+1}-b_ia_{i+1})x^2+(\delta_{i+1}-a_{i+1}\delta_i-b_id_{i+1})x-\delta_id_{i+1} xb~i+1​−b~i​a~i+1​=(bi+1​−bi​ai+1​)x2+(δi+1​−ai+1​δi​−bi​di+1​)x−δi​di+1​,若 b i + 1 = b i a i + 1 b_{i+1}=b_ia_{i+1} bi+1​=bi​ai+1​成立,则该多项式的二阶系数为0,仅需分别对一阶系数和常量仅需commit,然后Verifier利用commitment加法同态性仅需验证即可。具体思路为:

  • Prover:引入随机值 δ 1 , ⋯   , δ n \delta_1,\cdots,\delta_n δ1​,⋯,δn​,限定 δ 1 = d 1 , δ n = 0 \delta_1=d_1,\delta_n=0 δ1​=d1​,δn​=0对多项式常量commit c δ = c o m c k ( − δ 1 d 2 , ⋯   , − δ n − 1 d n ; s 1 ) c_{\delta}=com_{ck}(-\delta_1d_2,\cdots,-\delta_{n-1}d_n;s_1) cδ​=comck​(−δ1​d2​,⋯,−δn−1​dn​;s1​),对一阶系数commit c Δ = c o m c k ( δ 2 − a 2 δ 1 − b 1 d 2 , ⋯   , δ n − a n δ n − 1 − b n − 1 d n ; s x ) c_{\Delta}=com_{ck}(\delta_2-a_2\delta_1-b_1d_2,\cdots,\delta_n-a_n\delta_{n-1}-b_{n-1}d_n;s_x) cΔ​=comck​(δ2​−a2​δ1​−b1​d2​,⋯,δn​−an​δn−1​−bn−1​dn​;sx​) 。Prover给Verifier发送 c δ 和 c Δ c_{\delta}和c_{\Delta} cδ​和cΔ​。
  • Verifier:Challenge x x x。
  • Prover:计算 b ~ i = x b i + δ i \tilde{b}_i=xb_i+\delta_i b~i​=xbi​+δi​,同时计算 s ~ = x s x + s 1 \tilde{s}=xs_x+s_1 s~=xsx​+s1​。Prover给Verifier发送 b ~ 1 , ⋯   , b ~ n , s ~ \tilde{b}_1,\cdots,\tilde{b}_n,\tilde{s} b~1​,⋯,b~n​,s~。
  • Verifier:验证 b ~ 1 = a ~ 1 和 b ~ n = x b \tilde{b}_1=\tilde{a}_1和\tilde{b}_n=xb b~1​=a~1​和b~n​=xb成立以及 c Δ x c δ = c o m c k ( x b ~ 2 − b ~ 1 a ~ 2 , ⋯   , x b ~ n − b ~ n − 1 a ~ n ; s ~ ) c_{\Delta}^xc_{\delta}=com_{ck}(x\tilde{b}_2-\tilde{b}_1\tilde{a}_2,\cdots,x\tilde{b}_n-\tilde{b}_{n-1}\tilde{a}_n;\tilde{s}) cΔx​cδ​=comck​(xb~2​−b~1​a~2​,⋯,xb~n​−b~n−1​a~n​;s~)成立即可。 在这里插入图片描述
关注
打赏
1664532908
查看更多评论
立即登录/注册

微信扫码登录

0.3310s