- 一、Java 集合框架概述
- 1.1、集合框架与数组的对比及概述
- 1.2、集合框架涉及到的API
- 二、Collection接口方法
- 2.2、Collection接口中的常用方法1
- 2.3、Collection接口中的常用方法2
- 2.4、Collection接口中的常用方法3
- 2.5、Collection接口中的常用方法4
- 三、Iterator迭代器接口
- 3.1、使用Iterator遍历Collection
- 3.2、迭代器Iterator的执行原理
- 3.3、Iterator遍历集合的两种错误写法
- 3.4、Iterator迭代器remove()的使用
- 3.5、新特性foreach循环遍历集合或数组
- 四、Collection子接口之一:List接口
- 4.1、List接口常用实现类的对比
- 4.2、ArrayList的源码分析
- 4.3、LinkedList的源码分析
- 4.4、Vector的源码分析
- 4.5、List接口中的常用方法测试
- 4.6、List的一个面试小题
- 五、Collection子接口之二:Set接口
- 5.1、Set接口实现类的对比
- 5.2、Set的无序性与不可重复性的理解
- 5.3、HashSet中元素的添加过程
- 5.4、关于hashCode()和equals()的重写
- 5.4.1、重写hashCode() 方法的基本原则
- 5.4.2、重写equals() 方法的基本原则
- 5.4.3、Eclipse/IDEA工具里hashCode()的重写
- 5.5、LinkedHashSet的使用
- 5.6、TreeSet的自然排序
- 5.7、TreeSet的定制排序
- 5.8、Set课后两道面试题
- 六、Map接口
- 6.1、Map接口及其多个实现类的对比
- 6.2、Map中存储的key-value的特点
- 6.3、Map实现类之一:HashMap
- 6.4、HashMap的底层实现原理
- 6.4.1、HashMap在JDK7中的底层实现原理
- 6.4.2、HashMap在JDK8中的底层实现原理
- 6.7、LinkedHashMap的底层实现原理(了解)
- 6.8、Map中的常用方法1
- 6.9、Map中的常用方法2
- 6.10、TreeMap两种添加方式的使用
- 6.12、Hashtable
- 6.13、Properties处理属性文件
- 七、Collections工具类
- 7.1、Collections工具类常用方法的测试
- 7.2、补充:Enumeration(了解!!!)
/**
* 一、集合的框架
*
* 1.集合、数组都是对多个数据进行存储操作的结构,简称Java容器。
* 说明;此时的存储,主要是指能存层面的存储,不涉及到持久化的存储(.txt,.jpg,.avi,数据库中)
*
* 2.1数组在存储多个数据封面的特点:
* 》一旦初始化以后,它的长度就确定了。
* 》数组一旦定义好,它的数据类型也就确定了。我们就只能操作指定类型的数据了。
* 比如:String[] arr;int[] str;
* 2.2数组在存储多个数据方面的特点:
* 》一旦初始化以后,其长度就不可修改。
* 》数组中提供的方法非常有限,对于添加、删除、插入数据等操作,非常不便,同时效率不高。
* 》获取数组中实际元素的个数的需求,数组没有现成的属性或方法可用
* 》数组存储数据的特点:有序、可重复。对于无序、不可重复的需求,不能满足。
*
*/
1、集合的使用场景
-
Java 集合可分为
Collection
和Map
两种体系Collection
接口:单列数据,定义了存取一组对象的方法的集合List
:元素有序、可重复的集合Set
:元素无序、不可重复的集合
Map
接口:双列数据,保存具有映射关系“key-value对”的集合
1、Collection接口继承树
2、Map接口继承树
/**
*
* 二、集合框架
* &---Collection接口:单列集合,用来存储一个一个的对象
* &---List接口:存储有序的、可重复的数据。 -->“动态”数组
* &---ArrayList、LinkedList、Vector
*
* &---Set接口:存储无序的、不可重复的数据 -->高中讲的“集合”
* &---HashSet、LinkedHashSet、TreeSet
*
* &---Map接口:双列集合,用来存储一对(key - value)一对的数据 -->高中函数:y = f(x)
* &---HashMap、LinkedHashMap、TreeMap、Hashtable、Properties
*
*/
二、Collection接口方法
- Collection 接口是List、Set 和Queue 接口的父接口,该接口里定义的方法既可用于操作Set 集合,也可用于操作List 和Queue 集合。
- JDK不提供此接口的任何直接实现,而是提供更具体的子接口(如:Set和List)实现。
在Java5 之前,Java 集合会存放所有对象的数据类型,把所有对象都当成Object 类型处理;从JDK 5.0 增加了**泛型**以后,Java 集合可以记住容器中对象的数据类型
- 添加
- add(Objec tobj)
- addAll(Collection coll)
- 获取有效元素的个数
- int size()
- 清空集合
- void clear()
- 是否是空集合
- boolean isEmpty()
- 是否包含某个元素
- boolean contains(Object obj):是通过元素的equals方法来判断是否是同一个对象
- boolean containsAll(Collection c):也是调用元素的equals方法来比较的。拿两个集合的元素挨个比较。
- 删除
- boolean remove(Object obj) :通过元素的equals方法判断是否是要删除的那个元素。只会删除找到的第一个元素
- boolean removeAll(Collection coll):取当前集合的差集
- 取两个集合的交集
- boolean retainAll(Collection c):把交集的结果存在当前集合中,不影响c
- 集合是否相等
- boolean equals(Object obj)
- 转成对象数组
- Object[] toArray()
- 获取集合对象的哈希值
- hashCode()
- 遍历
- iterator():返回迭代器对象,用于集合遍历
import org.junit.Test;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
/**
*
* 三、Collection接口中的方法的使用
*
*/
public class CollectionTest {
@Test
public void test1(){
Collection coll = new ArrayList();
//add(Object e):将元素e添加到集合coll中
coll.add("AA");
coll.add("BB");
coll.add(123); //自动装箱
coll.add(new Date());
//size():获取添加的元素的个数
System.out.println(coll.size()); //4
//addAll(Collection coll1):将coll1集合中的元素添加到当前的集合中
Collection coll1 = new ArrayList();
coll1.add(456);
coll1.add("CC");
coll.addAll(coll1);
System.out.println(coll.size()); //6
System.out.println(coll);
//clear():清空集合元素
coll.clear();
//isEmpty():判断当前集合是否为空
System.out.println(coll.isEmpty());
}
}
2.3、Collection接口中的常用方法2
1、Person类
import java.util.Objects;
public class Person {
private String name;
private int age;
public Person() {
super();
}
public Person(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
@Override
public boolean equals(Object o) {
System.out.println("Person equals()....");
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Person person = (Person) o;
return age == person.age &&
Objects.equals(name, person.name);
}
@Override
public int hashCode() {
return Objects.hash(name, age);
}
}
2、测试类
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
/**
* Collection接口中声明的方法的测试
*
* 结论:
* 向Collection接口的实现类的对象中添加数据obj时,要求obj所在类要重写equals().
*/
public class CollectinoTest {
@Test
public void test(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
// Person p = new Person("Jerry",20);
// coll.add(p);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
//1.contains(Object obj):判断当前集合中是否包含obj
//我们在判断时会调用obj对象所在类的equals()。
boolean contains = coll.contains(123);
System.out.println(contains);
System.out.println(coll.contains(new String("Tam")));
// System.out.println(coll.contains(p));//true
System.out.println(coll.contains(new Person("Jerry",20)));//false -->true
//2.containsAll(Collection coll1):判断形参coll1中的所有元素是否都存在于当前集合中。
Collection coll1 = Arrays.asList(123,4567);
System.out.println(coll.containsAll(coll1));
}
}
2.4、Collection接口中的常用方法3
1、Person类
import java.util.Objects;
public class Person {
private String name;
private int age;
public Person() {
super();
}
public Person(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
@Override
public boolean equals(Object o) {
System.out.println("Person equals()....");
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Person person = (Person) o;
return age == person.age &&
Objects.equals(name, person.name);
}
@Override
public int hashCode() {
return Objects.hash(name, age);
}
}
2、测试类
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
/**
* Collection接口中声明的方法的测试
*
* 结论:
* 向Collection接口的实现类的对象中添加数据obj时,要求obj所在类要重写equals().
*
*/
public class CollectinoTest {
@Test
public void test2(){
//3.remove(Object obj):从当前集合中移除obj元素。
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
coll.remove(1234);
System.out.println(coll);
coll.remove(new Person("Jerry",20));
System.out.println(coll);
//4. removeAll(Collection coll1):差集:从当前集合中移除coll1中所有的元素。
Collection coll1 = Arrays.asList(123,456);
coll.removeAll(coll1);
System.out.println(coll);
}
@Test
public void test3(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
//5.retainAll(Collection coll1):交集:获取当前集合和coll1集合的交集,并返回给当前集合
// Collection coll1 = Arrays.asList(123,456,789);
// coll.retainAll(coll1);
// System.out.println(coll);
//6.equals(Object obj):要想返回true,需要当前集合和形参集合的元素都相同。
Collection coll1 = new ArrayList();
coll1.add(456);
coll1.add(123);
coll1.add(new Person("Jerry",20));
coll1.add(new String("Tom"));
coll1.add(false);
System.out.println(coll.equals(coll1));
}
}
2.5、Collection接口中的常用方法4
1、Person类
import java.util.Objects;
public class Person {
private String name;
private int age;
public Person() {
super();
}
public Person(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
@Override
public boolean equals(Object o) {
System.out.println("Person equals()....");
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Person person = (Person) o;
return age == person.age &&
Objects.equals(name, person.name);
}
@Override
public int hashCode() {
return Objects.hash(name, age);
}
}
2、测试类
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
/**
* Collection接口中声明的方法的测试
*
* 结论:
* 向Collection接口的实现类的对象中添加数据obj时,要求obj所在类要重写equals().
*
*/
public class CollectinoTest {
@Test
public void test4(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
//7.hashCode():返回当前对象的哈希值
System.out.println(coll.hashCode());
//8.集合 --->数组:toArray()
Object[] arr = coll.toArray();
for(int i = 0;i 集合:调用Arrays类的静态方法asList()
List list = Arrays.asList(new String[]{"AA", "BB", "CC"});
System.out.println(list);
List arr1 = Arrays.asList(123, 456);
System.out.println(arr1);//[123, 456]
List arr2 = Arrays.asList(new int[]{123, 456});
System.out.println(arr2.size());//1
List arr3 = Arrays.asList(new Integer[]{123, 456});
System.out.println(arr3.size());//2
//9.iterator():返回Iterator接口的实例,用于遍历集合元素。放在IteratorTest.java中测试
}
}
三、Iterator迭代器接口
- Iterator对象称为迭代器(设计模式的一种),主要用于遍历Collection 集合中的元素。
- GOF给迭代器模式的定义为:提供一种方法访问一个容器(container)对象中各个元素,而又不需暴露该对象的内部细节。迭代器模式,就是为容器而生。
Collection接口继承了java.lang.Iterable接口,该接口有一个iterator()方法,那么所有实现了Collection接口的集合类都有一个iterator()方法,用以返回一个实现了Iterator接口的对象。
- Iterator 仅用于遍历集合,Iterator本身并不提供承装对象的能力。如果需要创建Iterator 对象,则必须有一个被迭代的集合。
- 集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
import org.junit.Test;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
/**
* 集合元素的遍历操作,使用迭代器Iterator接口
* 内部的方法:hasNext()和 next()
*
*/
public class IteratorTest {
@Test
public void test(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
Iterator iterator = coll.iterator();
//方式一:
// System.out.println(iterator.next());
// System.out.println(iterator.next());
// System.out.println(iterator.next());
// System.out.println(iterator.next());
// System.out.println(iterator.next());
// //报异常:NoSuchElementException
// //因为:在调用it.next()方法之前必须要调用it.hasNext()进行检测。若不调用,且下一条记录无效,直接调用it.next()会抛出NoSuchElementException异常。
// System.out.println(iterator.next());
//方式二:不推荐
// for(int i = 0;i < coll.size();i++){
// System.out.println(iterator.next());
// }
//方式三:推荐
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
}
3.2、迭代器Iterator的执行原理
import org.junit.Test;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
/**
* 集合元素的遍历操作,使用迭代器Iterator接口
* 1.内部的方法:hasNext()和 next()
* 2.集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
*/
public class IteratorTest {
@Test
public void test2(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
//错误方式一:
// Iterator iterator = coll.iterator();
// while(iterator.next() != null){
// System.out.println(iterator.next());
// }
//错误方式二:
//集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
while(coll.iterator().hasNext()){
System.out.println(coll.iterator().next());
}
}
}
3.4、Iterator迭代器remove()的使用
import org.junit.Test;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
/**
* 集合元素的遍历操作,使用迭代器Iterator接口
* 1.内部的方法:hasNext()和 next()
* 2.集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
* 3.内部定义了remove(),可以在遍历的时候,删除集合中的元素。此方法不同于集合直接调用remove()
*/
public class IteratorTest {
//测试Iterator中的remove()方法
@Test
public void test3(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
//删除集合中”Tom”
//如果还未调用next()或在上一次调用 next 方法之后已经调用了 remove 方法,
// 再调用remove都会报IllegalStateException。
Iterator iterator = coll.iterator();
while(iterator.hasNext()){
// iterator.remove();
Object obj = iterator.next();
if("Tom".equals(obj)){
iterator.remove();
// iterator.remove();
}
}
//遍历集合
iterator = coll.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
}
注意:
- Iterator可以删除集合的元素,但是是遍历过程中通过迭代器对象的remove方法,不是集合对象的remove方法。
- 如果还未调用next()或在上一次调用next方法之后已经调用了remove方法,再调用remove都会报IllegalStateException。
- Java 5.0 提供了foreach循环迭代访问Collection和数组。
- 遍历操作不需获取Collection或数组的长度,无需使用索引访问元素。
- 遍历集合的底层调用Iterator完成操作。
- foreach还可以用来遍历数组。
import org.junit.Test;
import java.util.ArrayList;
import java.util.Collection;
/**
* jdk 5.0 新增了foreach循环,用于遍历集合、数组
*
*/
public class ForTest {
@Test
public void test(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
//for(集合元素的类型 局部变量 : 集合对象),内部仍然调用了迭代器。
for(Object obj : coll){
System.out.println(obj);
}
}
@Test
public void test2(){
int[] arr = new int[]{1,2,3,4,5,6};
//for(数组元素的类型 局部变量 : 数组对象)
for(int i : arr){
System.out.println(i);
}
}
//练习题
@Test
public void test3(){
String[] arr = new String[]{"SS","KK","RR"};
// //方式一:普通for赋值
// for(int i = 0;i < arr.length;i++){
// arr[i] = "HH";
// }
//方式二:增强for循环
for(String s : arr){
s = "HH";
}
for(int i = 0;i “动态”数组,替换原有的数组
* |----ArrayList:作为List接口的主要实现类;线程不安全的,效率高;底层使用Object[] elementData存储
* |----LinkedList:对于频繁的插入、删除操作,使用此类效率比ArrayList高;底层使用双向链表存储
* |----Vector:作为List接口的古老实现类;线程安全的,效率低;底层使用Object[] elementData存储
*
*
* 面试题:比较ArrayList、LinkedList、Vector三者的异同?
* 同:三个类都是实现了List接口,存储数据的特点相同:存储有序的、可重复的数据
* 不同:见上
*
*/
4.2、ArrayList的源码分析
- ArrayList是List 接口的典型实现类、主要实现类
- 本质上,ArrayList是对象引用的一个”变长”数组
/**
* 2.ArrayList的源码分析:
* 2.1 jdk 7情况下
* ArrayList list = new ArrayList();//底层创建了长度是10的Object[]数组elementData
* list.add(123);//elementData[0] = new Integer(123);
* ...
* list.add(11);//如果此次的添加导致底层elementData数组容量不够,则扩容。
* 默认情况下,扩容为原来的容量的1.5倍,同时需要将原有数组中的数据复制到新的数组中。
*
* 结论:建议开发中使用带参的构造器:ArrayList list = new ArrayList(int capacity)
*
* 2.2 jdk 8中ArrayList的变化:
* ArrayList list = new ArrayList();//底层Object[] elementData初始化为{}.并没有创建长度为10的数组
*
* list.add(123);//第一次调用add()时,底层才创建了长度10的数组,并将数据123添加到elementData[0]
* ...
* 后续的添加和扩容操作与jdk 7 无异。
* 2.3 小结:jdk7中的ArrayList的对象的创建类似于单例的饿汉式,而jdk8中的ArrayList的对象
* 的创建类似于单例的懒汉式,延迟了数组的创建,节省内存。
*
*/
4.3、LinkedList的源码分析
- 对于频繁的插入或删除元素的操作,建议使用LinkedList类,效率较高
- LinkedList:双向链表,内部没有声明数组,而是定义了Node类型的first和last,用于记录首末元素。同时,定义内部类Node,作为LinkedList中保存数据的基本结构。
/**
* 3.LinkedList的源码分析:
* LinkedList list = new LinkedList(); 内部声明了Node类型的first和last属性,默认值为null
* list.add(123);//将123封装到Node中,创建了Node对象。
*
* 其中,Node定义为:体现了LinkedList的双向链表的说法
* private static class Node {
* E item;
* Node next;
* Node prev;
*
* Node(Node prev, E element, Node next) {
* this.item = element;
* this.next = next; //next变量记录下一个元素的位置
* this.prev = prev; //prev变量记录前一个元素的位置
* }
* }
*/
4.4、Vector的源码分析
- Vector 是一个古老的集合,JDK1.0就有了。大多数操作与ArrayList相同,区别之处在于Vector是线程安全的。
- 在各种list中,最好把ArrayList作为缺省选择。当插入、删除频繁时,使用LinkedList;Vector总是比ArrayList慢,所以尽量避免使用。
/**
* 4.Vector的源码分析:jdk7和jdk8中通过Vector()构造器创建对象时,底层都创建了长度为10的数组。
* 在扩容方面,默认扩容为原来的数组长度的2倍。
*/
4.5、List接口中的常用方法测试
List除了从Collection集合继承的方法外,List 集合里添加了一些根据索引来操作集合元素的方法。
void add(intindex, Object ele)
:在index位置插入ele元素boolean addAll(int index, Collection eles)
:从index位置开始将eles中的所有元素添加进来Object get(int index)
:获取指定index位置的元素int indexOf(Object obj)
:返回obj在集合中首次出现的位置int lastIndexOf(Object obj)
:返回obj在当前集合中末次出现的位置Object remove(int index)
:移除指定index位置的元素,并返回此元素Object set(int index, Object ele)
:设置指定index位置的元素为eleList subList(int fromIndex, int toIndex)
:返回从fromIndex到toIndex位置的子集合
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
/**
*
* 5.List接口的常用方法
*/
public class ListTest {
/**
*
* void add(int index, Object ele):在index位置插入ele元素
* boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
* Object get(int index):获取指定index位置的元素
* int indexOf(Object obj):返回obj在集合中首次出现的位置
* int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置
* Object remove(int index):移除指定index位置的元素,并返回此元素
* Object set(int index, Object ele):设置指定index位置的元素为ele
* List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的子集合
*
* 总结:常用方法
* 增:add(Object obj)
* 删:remove(int index) / remove(Object obj)
* 改:set(int index, Object ele)
* 查:get(int index)
* 插:add(int index, Object ele)
* 长度:size()
* 遍历:① Iterator迭代器方式
* ② 增强for循环
* ③ 普通的循环
*
*/
@Test
public void test3(){
ArrayList list = new ArrayList();
list.add(123);
list.add(456);
list.add("AA");
//方式一:Iterator迭代器方式
Iterator iterator = list.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
System.out.println("***************");
//方式二:增强for循环
for(Object obj : list){
System.out.println(obj);
}
System.out.println("***************");
//方式三:普通for循环
for(int i = 0;i 高中讲的“集合”
* |----HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值
* |----LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历
* 对于频繁的遍历操作,LinkedHashSet效率高于HashSet.
* |----TreeSet:可以按照添加对象的指定属性,进行排序。
*/
5.2、Set的无序性与不可重复性的理解
1、测试类
import org.junit.Test;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
/**
*
* 1.Set接口中没有定义额外的方法,使用的都是Collection中声明过的方法。
*
*/
public class SetTest {
/**
* 一、Set:存储无序的、不可重复的数据
* 1.无序性:不等于随机性。存储的数据在底层数组中并非按照数组索引的顺序添加,而是根据数据的哈希值决定的。
*
* 2.不可重复性:保证添加的元素按照equals()判断时,不能返回true.即:相同的元素只能添加一个。
*
* 二、添加元素的过程:以HashSet为例:
*
*
*/
@Test
public void test(){
Set set = new HashSet();
set.add(123);
set.add(456);
set.add("fgd");
set.add("book");
set.add(new User("Tom",12));
set.add(new User("Tom",12));
set.add(129);
Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
}
2、User类
public class User{
private String name;
private int age;
public User() {
}
public User(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "User{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
@Override
public boolean equals(Object o) {
System.out.println("User equals()....");
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
User user = (User) o;
if (age != user.age) return false;
return name != null ? name.equals(user.name) : user.name == null;
}
@Override
public int hashCode() {
int result = name != null ? name.hashCode() : 0;
result = 31 * result + age;
return result;
}
}
5.3、HashSet中元素的添加过程
HashSet
是Set
接口的典型实现,大多数时候使用Set 集合时都使用这个实现类。HashSe
t按Hash
算法来存储集合中的元素,因此具有很好的存取、查找、删除性能。HashSet
具有以下特点:不能保证元素的排列顺序HashSet
不是线程安全的- 集合元素可以是
null
- 底层也是数组,初始容量为16,当如果使用率超过0.75,(16*0.75=12)就会扩大容量为原来的2倍。(16扩容为32,依次为64,128…等)
HashSet
集合判断两个元素相等的标准:两个对象通过hashCode()
方法比较相等,并且两个对象的equals()
方法返回值也相等。- 对于存放在
Set
容器中的对象,对应的类一定要重写equals()
和hashCode(Object obj)
方法,以实现对象相等规则。即:“相等的对象必须具有相等的散列码”。
/**
* 一、Set:存储无序的、不可重复的数据
* 1.无序性:不等于随机性。存储的数据在底层数组中并非按照数组索引的顺序添加,而是根据数据的哈希值决定的。
*
* 2.不可重复性:保证添加的元素按照equals()判断时,不能返回true.即:相同的元素只能添加一个。
*
* 二、添加元素的过程:以HashSet为例:
* 我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,
* 此哈希值接着通过某种算法计算出在HashSet底层数组中的存放位置(即为:索引位置),判断
* 数组此位置上是否已经有元素:
* 如果此位置上没有其他元素,则元素a添加成功。 --->情况1
* 如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
* 如果hash值不相同,则元素a添加成功。--->情况2
* 如果hash值相同,进而需要调用元素a所在类的equals()方法:
* equals()返回true,元素a添加失败
* equals()返回false,则元素a添加成功。--->情况2
*
* 对于添加成功的情况2和情况3而言:元素a 与已经存在指定索引位置上数据以链表的方式存储。
* jdk 7 :元素a放到数组中,指向原来的元素。
* jdk 8 :原来的元素在数组中,指向元素a
* 总结:七上八下
*
* HashSet底层:数组+链表的结构。
*
*/
- 在程序运行时,同一个对象多次调用
hashCode()
方法应该返回相同的值。 - 当两个对象的
equals()
方法比较返回true
时,这两个对象的hashCode()
方法的返回值也应相等。 - 对象中用作
equals()
方法比较的Field
,都应该用来计算hashCode
值。
以自定义的Customer类为例,何时需要重写equals()?
- 当一个类有自己特有的“逻辑相等”概念,当改写equals()的时候,总是要改写
hashCode()
,根据一个类的equals
方法(改写后),两个截然不同的实例有可能在逻辑上是相等的,但是,根据Object.hashCode()
方法,它们仅仅是两个对象。 - 因此,违反了“相等的对象必须具有相等的散列码”。
- 结论:复写
equals
方法的时候一般都需要同时复写hashCode
方法。通常参与计算hashCod
e的对象的属性也应该参与到equals()
中进行计算。
以Eclipse/IDEA为例,在自定义类中可以调用工具自动重写equals和hashCode。问题:为什么用Eclipse/IDEA复写hashCode方法,有31这个数字?
- 选择系数的时候要选择尽量大的系数。因为如果计算出来的hash地址越大,所谓的“冲突”就越少,查找起来效率也会提高。(减少冲突)
- 并且31只占用5bits,相乘造成数据溢出的概率较小。
- 31可以由i*31== (ivalue所在的类要重写equals()
* 一个键值对:key-value构成了一个Entry对象。
* Map中的entry:无序的、不可重复的,使用Set存储所有的entry
*
*/
6.3、Map实现类之一:HashMap
HashMap
是Map
接口使用频率最高的实现类。- 允许使用
null
键和null
值,与HashSet
一样,不保证映射的顺序。 - 所有的
key
构成的集合是Set
:无序的、不可重复的。所以,key
所在的类要重写:equals()
和hashCode()
- 所有的
value
构成的集合是Collection
:无序的、可以重复的。所以,value
所在的类要重写:equals()
- 一个
key-value
构成一个entry
- 所有的
entry
构成的集合是Set
:无序的、不可重复的 HashMap
判断两个key
相等的标准是:两个key
通过equals()
方法返回true
,hashCode
值也相等。HashMap
判断两个value
相等的标准是:两个value
通过equals()
方法返回true
。
JDK 7及以前版本:HashMap是数组+链表结构(即为链地址法)
JDK 8版本发布以后:HashMap是数组+链表+红黑树实现。
HashMap源码中的重要常量
6.4.1、HashMap在JDK7中的底层实现原理/* * DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16 * DEFAULT_LOAD_FACTOR:HashMap的默认加载因子:0.75 * threshold:扩容的临界值,=容量*填充因子:16 * 0.75 => 12 * TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树:8 * MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量:64 */
HashMap的
内部存储结构其实是数组和链表的结合。当实例化一个HashMap
时,系统会创建一个长度为Capacity
的Entry
数组,这个长度在哈希表中被称为容量(Capacity
),在这个数组中可以存放元素的位置我们称之为“桶”(bucket
),每个bucket
都有自己的索引,系统可以根据索引快速的查找bucket
中的元素。- 每个
bucket
中存储一个元素,即一个Entry
对象,但每一个Entry
对象可以带一个引用变量,用于指向下一个元素,因此,在一个桶中,就有可能生成一个Entry
链。而且新添加的元素作为链表的head
。 - 添加元素的过程:
- 向
HashMap
中添加entry1(key,value)
,需要首先计算entry1
中key
的哈希值(根据key
所在类的hashCode()
计算得到),此哈希值经过处理以后,得到在底层Entry[]
数组中要存储的位置i
。 - 如果位置
i
上没有元素,则entry1
直接添加成功。 - 如果位置
i
上已经存在entry2
(或还有链表存在的entry3,entry4
),则需要通过循环的方法,依次比较entry1
中key
的hash
值和其他的entry
的hash
值。 - 如果彼此
hash
值不同,则直接添加成功。 - 如果
hash
值相同,继续比较二者是否equals
。如果返回值为true
,则使用entry1
的value
去替换equals
为true
的entry
的value
。 - 如果遍历一遍以后,发现所有的
equals
返回都为false
,则entry1
仍可添加成功。entry1
指向原有的entry
元素。
- 向
6.4.2、HashMap在JDK8中的底层实现原理/* * 三、HashMap的底层实现原理?以jdk7为例说明: * HashMap map = new HashMap(): * 在实例化以后,底层创建了长度是16的一维数组Entry[] table。 * ...可能已经执行过多次put... * map.put(key1,value1): * 首先,调用key1所在类的hashCode()计算key1哈希值,此哈希值经过某种算法计算以后,得到在Entry数组中的存放位置。 * 如果此位置上的数据为空,此时的key1-value1添加成功。 ----情况1 * 如果此位置上的数据不为空,(意味着此位置上存在一个或多个数据(以链表形式存在)),比较key1和已经存在的一个或多个数据 * 的哈希值: * 如果key1的哈希值与已经存在的数据的哈希值都不相同,此时key1-value1添加成功。----情况2 * 如果key1的哈希值和已经存在的某一个数据(key2-value2)的哈希值相同,继续比较:调用key1所在类的equals(key2)方法,比较: * 如果equals()返回false:此时key1-value1添加成功。----情况3 * 如果equals()返回true:使用value1替换value2。 * * 补充:关于情况2和情况3:此时key1-value1和原来的数据以链表的方式存储。 * * 在不断的添加过程中,会涉及到扩容问题,当超出临界值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来。 * */ /** * HashMap的扩容 * 当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高, * 因为数组的长度是固定的。所以为了提高查询的效率, * 就要对HashMap的数组进行扩容,而在HashMap数组扩容之后, * 最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置, * 并放进去,这就是resize。 * * 那么HashMap什么时候进行扩容呢? * 当HashMap中的元素个数超过数组大小(数组总大小length, * 不是数组中个数size)*loadFactor时,就 会 进 行 数 组 扩 容, * loadFactor的默认值(DEFAULT_LOAD_FACTOR)为0.75,这是一个折中的取值。 * 也就是说,默认情况下,数组大小(DEFAULT_INITIAL_CAPACITY)为16, * 那么当HashMap中元素个数超过16*0.75=12(这个值就是代码中的threshold值, * 也叫做临界值)的时候,就把数组的大小扩展为2*16=32,即扩大一倍, * 然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作, * 所以如果我们已经预知HashMap中元素的个数, * 那么预设元素的个数能够有效的提高HashMap的性能。 */
-
HashMap
的内部存储结构其实是数组+链表+红黑树的结合。当实例化一个HashMap
时,会初始化initialCapacity
和loadFactor
,在put
第一对映射关系时,系统会创建一个长度为initialCapacity
的Node
数组,这个长度在哈希表中被称为容量(Capacity
),在这个数组中可以存放元素的位置我们称之为“桶”(bucket
),每个bucket
都有自己的索引,系统可以根据索引快速的查找bucket
中的元素 -
每个
bucket
中存储一个元素,即一个Node
对象,但每一个Node
对象可以带一个引用变量next
,用于指向下一个元素,因此,在一个桶中,就有可能生成一个Node
链。也可能是一个一个TreeNode
对象,每一个TreeNode
对象可以有两个叶子结点left
和right
,因此,在一个桶中,就有可能生成一个TreeNode
树。而新添加的元素作为链表的last
,或树的叶子结点。 -
那么HashMap什么时候进行扩容和树形化呢?
当
HashMap
中的元素个数超过数组大小(数组总大小length,不是数组中个数size)*loadFactor
时,就会进行数组扩容,loadFactor
的默认值(DEFAULT_LOAD_FACTOR)为0.75
,这是一个折中的取值。也就是说,默认情况下,数组大小(DEFAULT_INITIAL_CAPACITY)为16,那么当HashMap中元素个数超过16*0.75=12
(这个值就是代码中的threshold
值,也叫做临界值)的时候,就把数组的大小扩展为2*16=32
,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap
中元素的个数,那么预设元素的个数能够有效的提高HashMap
的性能。 -
当
HashMap
中的其中一个链的对象个数如果达到了8
个,此时如果capacity
没有达到64
,那么HashMap
会先扩容解决,如果已经达到了64
,那么这个链会变成红黑树,结点类型由Node
变成TreeNode
类型。当然,如果当映射关系被移除后,下次resize
方法时判断树的结点个数低于6
个,也会把红黑树再转为链表。 -
关于映射关系的
key
是否可以修改?answer:不要修改映射关系存储到
HashMap
中会存储key
的hash
值,这样就不用在每次查找时重新计算每一个Entry
或Node(TreeNode)
的hash
值了,因此如果已经put
到Map
中的映射关系,再修改key
的属性,而这个属性又参与hashcode
值的计算,那么会导致匹配不上。
6.7、LinkedHashMap的底层实现原理(了解)/* 总结: * jdk8 相较于jdk7在底层实现方面的不同: * 1.new HashMap():底层没有创建一个长度为16的数组 * 2.jdk 8底层的数组是:Node[],而非Entry[] * 3.首次调用put()方法时,底层创建长度为16的数组 * 4.jdk7底层结构只有:数组+链表。jdk8中底层结构:数组+链表+红黑树。 * 4.1形成链表时,七上八下(jdk7:新的元素指向旧的元素。jdk8:旧的元素指向新的元素) * 4.2当数组的某一个索引位置上的元素以链表形式存在的数据个数 > 8 且当前数组的长度 > 64时,此时此索引位置上的所数据改为使用红黑树存储。 */
-
LinkedHashMap
是HashMap
的子类 -
在
HashMap
存储结构的基础上,使用了一对双向链表来记录添加元素的顺序 -
与
LinkedHashSet
类似,LinkedHashMap
可以维护Map
的迭代顺序:迭代顺序与Key-Value
对的插入顺序一致 -
HashMap
中的内部类:Node
-
LinkedHashMap
中的内部类:Entry
6.8、Map中的常用方法1/* * 四、LinkedHashMap的底层实现原理(了解) * 源码中: * static class Entry extends HashMap.Node { * Entry before, after;//能够记录添加的元素的先后顺序 * Entry(int hash, K key, V value, Node next) { * super(hash, key, value, next); * } * } */ import org.junit.Test; import java.util.HashMap; import java.util.LinkedHashMap; import java.util.Map; public class MapTest { @Test public void test2(){ Map map = new HashMap(); map = new LinkedHashMap(); map.put(123,"AA"); map.put(345,"BB"); map.put(12,"CC"); System.out.println(map); } }
6.9、Map中的常用方法2import org.junit.Test; import java.util.*; /** * 五、Map中定义的方法: * 添加、删除、修改操作: * Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中 * void putAll(Map m):将m中的所有key-value对存放到当前map中 * Object remove(Object key):移除指定key的key-value对,并返回value * void clear():清空当前map中的所有数据 * 元素查询的操作: * Object get(Object key):获取指定key对应的value * boolean containsKey(Object key):是否包含指定的key * boolean containsValue(Object value):是否包含指定的value * int size():返回map中key-value对的个数 * boolean isEmpty():判断当前map是否为空 * boolean equals(Object obj):判断当前map和参数对象obj是否相等 * 元视图操作的方法: * Set keySet():返回所有key构成的Set集合 * Collection values():返回所有value构成的Collection集合 * Set entrySet():返回所有key-value对构成的Set集合 * */ public class MapTest { /** * 元素查询的操作: * Object get(Object key):获取指定key对应的value * boolean containsKey(Object key):是否包含指定的key * boolean containsValue(Object value):是否包含指定的value * int size():返回map中key-value对的个数 * boolean isEmpty():判断当前map是否为空 * boolean equals(Object obj):判断当前map和参数对象obj是否相等 */ @Test public void test4(){ Map map = new HashMap(); map.put("AA",123); map.put(45,123); map.put("BB",56); // Object get(Object key) System.out.println(map.get(45)); //containsKey(Object key) boolean isExist = map.containsKey("BB"); System.out.println(isExist); isExist = map.containsValue(123); System.out.println(isExist); map.clear(); System.out.println(map.isEmpty()); } /** * 添加、删除、修改操作: * Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中 * void putAll(Map m):将m中的所有key-value对存放到当前map中 * Object remove(Object key):移除指定key的key-value对,并返回value * void clear():清空当前map中的所有数据 */ @Test public void test3(){ Map map = new HashMap(); //添加 map.put("AA",123); map.put(45,123); map.put("BB",56); //修改 map.put("AA",87); System.out.println(map); Map map1 = new HashMap(); map1.put("CC",123); map1.put("DD",456); map.putAll(map1); System.out.println(map); //remove(Object key) Object value = map.remove("CC"); System.out.println(value); System.out.println(map); //clear() map.clear();//与map = null操作不同 System.out.println(map.size()); System.out.println(map); } }
6.10、TreeMap两种添加方式的使用import org.junit.Test; import java.util.*; /** * 五、Map中定义的方法: * 添加、删除、修改操作: * Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中 * void putAll(Map m):将m中的所有key-value对存放到当前map中 * Object remove(Object key):移除指定key的key-value对,并返回value * void clear():清空当前map中的所有数据 * 元素查询的操作: * Object get(Object key):获取指定key对应的value * boolean containsKey(Object key):是否包含指定的key * boolean containsValue(Object value):是否包含指定的value * int size():返回map中key-value对的个数 * boolean isEmpty():判断当前map是否为空 * boolean equals(Object obj):判断当前map和参数对象obj是否相等 * 元视图操作的方法: * Set keySet():返回所有key构成的Set集合 * Collection values():返回所有value构成的Collection集合 * Set entrySet():返回所有key-value对构成的Set集合 * * 总结:常用方法: * 添加:put(Object key,Object value) * 删除:remove(Object key) * 修改:put(Object key,Object value) * 查询:get(Object key) * 长度:size() * 遍历:keySet() / values() / entrySet() * * 面试题: * 1. HashMap的底层实现原理? * 2. HashMap 和 Hashtable的异同? * 1.HashMap与Hashtable都实现了Map接口。由于HashMap的非线程安全性,效率上可能高于Hashtable。Hashtable的方法是Synchronize的,而HashMap不是,在多个线程访问Hashtable时,不需要自己为它的方法实现同步,而HashMap 就必须为之提供外同步。 * 2.HashMap允许将null作为一个entry的key或者value,而Hashtable不允许。 * 3.HashMap把Hashtable的contains方法去掉了,改成containsvalue和containsKey。因为contains方法容易让人引起误解。 * 4.Hashtable继承自Dictionary类,而HashMap是Java1.2引进的Map interface的一个实现。 * 5.Hashtable和HashMap采用的hash/rehash算法都大概一样,所以性能不会有很大的差异。 * * 3. CurrentHashMap 与 Hashtable的异同?(暂时不讲) * */ public class MapTest { /** * 元视图操作的方法: * Set keySet():返回所有key构成的Set集合 * Collection values():返回所有value构成的Collection集合 * Set entrySet():返回所有key-value对构成的Set集合 */ @Test public void test5(){ Map map = new HashMap(); map.put("AA",123); map.put(45,1234); map.put("BB",56); //遍历所有的key集:keySet() Set set = map.keySet(); Iterator iterator = set.iterator(); while(iterator.hasNext()){ System.out.println(iterator.next()); } System.out.println("*****************"); //遍历所有的values集:values() Collection values = map.values(); for(Object obj : values){ System.out.println(obj); } System.out.println("***************"); //遍历所有的key-values //方式一: Set entrySet = map.entrySet(); Iterator iterator1 = entrySet.iterator(); while (iterator1.hasNext()){ Object obj = iterator1.next(); //entrySet集合中的元素都是entry Map.Entry entry = (Map.Entry) obj; System.out.println(entry.getKey() + "---->" + entry.getValue()); } System.out.println("/"); //方式二: Set keySet = map.keySet(); Iterator iterator2 = keySet.iterator(); while(iterator2.hasNext()){ Object key = iterator2.next(); Object value = map.get(key); System.out.println(key + "=====" + value); } } }
TreeMap
存储Key-Value
对时,需要根据key-value
对进行排序。TreeMap
可以保证所有的Key-Value
对处于有序状态。TreeSet
底层使用红黑树结构存储数据TreeMap
的Key
的排序:- 自然排序:
TreeMap
的所有的Key
必须实现Comparable
接口,而且所有的Key
应该是同一个类的对象,否则将会抛出ClasssCastException
- 定制排序:创建
TreeMap
时,传入一个Comparator
对象,该对象负责对TreeMap
中的所有key
进行排序。此时不需要Map
的Key
实现Comparable
接口
- 自然排序:
TreeMap
判断两个key
相等的标准:两个key
通过compareTo()
方法或者compare()
方法返回0
。
1、User类
public class User implements Comparable{ private String name; private int age; public User() { } public User(String name, int age) { this.name = name; this.age = age; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } @Override public String toString() { return "User{" + "name='" + name + '\'' + ", age=" + age + '}'; } @Override public boolean equals(Object o) { System.out.println("User equals()...."); if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; User user = (User) o; if (age != user.age) return false; return name != null ? name.equals(user.name) : user.name == null; } @Override public int hashCode() { //return name.hashCode() + age; int result = name != null ? name.hashCode() : 0; result = 31 * result + age; return result; } //按照姓名从大到小排列,年龄从小到大排列 @Override public int compareTo(Object o) { if(o instanceof User){ User user = (User)o; // return -this.name.compareTo(user.name); int compare = -this.name.compareTo(user.name); if(compare != 0){ return compare; }else{ return Integer.compare(this.age,user.age); } }else{ throw new RuntimeException("输入的类型不匹配"); } } }
2、测试类
6.12、Hashtableimport org.junit.Test; import java.util.*; public class TreeMapTest { /** * 向TreeMap中添加key-value,要求key必须是由同一个类创建的对象 * 因为要按照key进行排序:自然排序 、定制排序 */ //自然排序 @Test public void test(){ TreeMap map = new TreeMap(); User u1 = new User("Tom",23); User u2 = new User("Jerry",32); User u3 = new User("Jack",20); User u4 = new User("Rose",18); map.put(u1,98); map.put(u2,89); map.put(u3,76); map.put(u4,100); Set entrySet = map.entrySet(); Iterator iterator1 = entrySet.iterator(); while (iterator1.hasNext()){ Object obj = iterator1.next(); Map.Entry entry = (Map.Entry) obj; System.out.println(entry.getKey() + "---->" + entry.getValue()); } } //定制排序 @Test public void test2(){ TreeMap map = new TreeMap(new Comparator() { @Override public int compare(Object o1, Object o2) { if(o1 instanceof User && o2 instanceof User){ User u1 = (User)o1; User u2 = (User)o2; return Integer.compare(u1.getAge(),u2.getAge()); } throw new RuntimeException("输入的类型不匹配!"); } }); User u1 = new User("Tom",23); User u2 = new User("Jerry",32); User u3 = new User("Jack",20); User u4 = new User("Rose",18); map.put(u1,98); map.put(u2,89); map.put(u3,76); map.put(u4,100); Set entrySet = map.entrySet(); Iterator iterator1 = entrySet.iterator(); while (iterator1.hasNext()){ Object obj = iterator1.next(); Map.Entry entry = (Map.Entry) obj; System.out.println(entry.getKey() + "---->" + entry.getValue()); } } }
Hashtable
是个古老的Map
实现类,JDK1.0就提供了。不同于HashMap
,Hashtable
是线程安全的。Hashtable
实现原理和HashMap
相同,功能相同。底层都使用哈希表结构,查询速度快,很多情况下可以互用。- 与
HashMap
不同,Hashtable
不允许使用null
作为key
和value
- 与
HashMap
一样,Hashtable
也不能保证其中Key-Value
对的顺序 Hashtable
判断两个key
相等、两个valu
e相等的标准,与HashMap
一致。
Properties
类是Hashtable
的子类,该对象用于处理属性文件- 由于属性文件里的
key、value
都是字符串类型,所以**Properties
里的key
和value
都是字符串类型** - 存取数据时,建议使用
setProperty(String key,Stringvalue)
方法和getProperty(String key)
方法
1、新建jdbc.properties文件
aaa=bbb ccc=ddd
2、编写源代码
七、Collections工具类import java.io.FileInputStream; import java.io.IOException; import java.util.Properties; public class PropertiesTest { //Properties:常用来处理配置文件。key和value都是String类型 public static void main(String[] args){ //快捷键:ALT+Shift+Z FileInputStream fis = null; try { Properties pros = new Properties(); fis = new FileInputStream("jdbc.properties"); pros.load(fis); //加载流对应文件 String name = pros.getProperty("name"); String password = pros.getProperty("password"); System.out.println("name = " + name + ",password = " + password); } catch (IOException e) { e.printStackTrace(); } finally { if(fis != null){ try { fis.close(); } catch (IOException e) { e.printStackTrace(); } } } } }
- 操作数组的工具类:
Arrays
Collections
是一个操作Set、List
和Map
等集合的工具类Collections
中提供了一系列静态的方法对集合元素进行排序、查询和修改等操作,还提供了对集合对象设置不可变、对集合对象实现同步控制等方法- 排序操作:(均为
static
方法)reverse(List)
:反转List 中元素的顺序shuffle(List)
:对List集合元素进行随机排序sort(List)
:根据元素的自然顺序对指定List 集合元素按升序排序sort(List,Comparator)
:根据指定的Comparator 产生的顺序对List 集合元素进行排序swap(List,int,int)
:将指定list 集合中的i处元素和j 处元素进行交换
7.2、补充:Enumeration(了解!!!)import org.junit.Test; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; /** * Collections:操作Collection、Map的工具类 * * 面试题:Collection 和 Collections的区别? * Collection是集合类的上级接口,继承于他的接口主要有Set 和List. * Collections是针对集合类的一个帮助类,他提供一系列静态方法实现对各种集合的搜索、排序、线程安全化等操作. */ public class CollectionTest { /** * reverse(List):反转 List 中元素的顺序 * shuffle(List):对 List 集合元素进行随机排序 * sort(List):根据元素的自然顺序对指定 List 集合元素按升序排序 * sort(List,Comparator):根据指定的 Comparator 产生的顺序对 List 集合元素进行排序 * swap(List,int, int):将指定 list 集合中的 i 处元素和 j 处元素进行交换 * * Object max(Collection):根据元素的自然顺序,返回给定集合中的最大元素 * Object max(Collection,Comparator):根据 Comparator 指定的顺序,返回给定集合中的最大元素 * Object min(Collection) * Object min(Collection,Comparator) * int frequency(Collection,Object):返回指定集合中指定元素的出现次数 * void copy(List dest,List src):将src中的内容复制到dest中 * boolean replaceAll(List list,Object oldVal,Object newVal):使用新值替换 List 对象的所有旧值 * */ @Test public void test(){ List list = new ArrayList(); list.add(123); list.add(43); list.add(765); list.add(765); list.add(765); list.add(-97); list.add(0); System.out.println(list); // Collections.reverse(list); // Collections.shuffle(list); // Collections.sort(list); // Collections.swap(list,1,2); int frequency = Collections.frequency(list, 123); System.out.println(list); System.out.println(frequency); } @Test public void test2(){ List list = new ArrayList(); list.add(123); list.add(43); list.add(765); list.add(-97); list.add(0); //报异常:IndexOutOfBoundsException("Source does not fit in dest") // List dest = new ArrayList(); // Collections.copy(dest,list); //正确的: List dest = Arrays.asList(new Object[list.size()]); System.out.println(dest.size());//list.size(); Collections.copy(dest,list); System.out.println(dest); /** * Collections 类中提供了多个 synchronizedXxx() 方法, * 该方法可使将指定集合包装成线程同步的集合,从而可以解决 * 多线程并发访问集合时的线程安全问题 */ //返回的list1即为线程安全的List List list1 = Collections.synchronizedList(list); } }
Enumeration
接口是Iterator
迭代器的“古老版本”
Enumeration stringEnum = new StringTokenizer("a-b*c-d-e-g", "-"); while(stringEnum.hasMoreElements()){ Object obj= stringEnum.nextElement();System.out.println(obj); }