from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import os
import matplotlib.pyplot as plt
import sys
import numpy as np
class DCGAN():
def __init__(self):
# Input shape
self.img_rows = 4
self.img_cols = 60
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.latent_dim = 100
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise as input and generates imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
valid = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
model = Sequential()
model.add(Dense(512 * 2 * 2, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((2, 2, 512)))
model.add(UpSampling2D(size=(1,2)))
model.add(Conv2D(512, kernel_size=(2,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D(size=(1,2)))
model.add(Conv2D(256, kernel_size=(2,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D(size=(1,2)))
model.add(Conv2D(128, kernel_size=(1,2), padding="valid"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D(size=(1,2)))
model.add(Conv2D(64, kernel_size=(2,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D(size=(2,2)))
model.add(Conv2D(32, kernel_size=(2,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(Conv2D(self.channels, kernel_size=(2,2), padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(32, kernel_size=2, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=2, strides=(1,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=2, strides=(1,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=2, strides=(1,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(512, kernel_size=2, strides=(1,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
def train(self, epochs, batch_size=128, sample_interval=50):
############################################################
#自己数据集此部分需要更改
# 加载数据集
data = np.load('data/分叉_图.npy')
print(data.shape)
# 归一化到-1到1
data = data * 2 - 1
data = np.expand_dims(data, axis=3)
############################################################
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half of images
idx = np.random.randint(0, data.shape[0], batch_size)
imgs = data[idx]
# Sample noise and generate a batch of new images
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
gen_imgs = self.generator.predict(noise)
# Train the discriminator (real classified as ones and generated as zeros)
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Train the generator (wants discriminator to mistake images as real)
g_loss = self.combined.train_on_batch(noise, valid)
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.sample_images(epoch)
if not os.path.exists("keras_model"):
os.makedirs("keras_model")
self.generator.save_weights("keras_model/G_model%d.hdf5" % epoch,True)
self.discriminator.save_weights("keras_model/D_model%d.hdf5" %epoch,True)
def sample_images(self, epoch):
r, c = 10, 10
# 重新生成一批噪音,维度为(100,100)
noise = np.random.normal(0, 1, (r * c, self.latent_dim))
gen_imgs = self.generator.predict(noise)
# 将生成的图片重新归整到0-1之间
gen = 0.5 * gen_imgs + 0.5
gen = gen.reshape(-1,4,60)
fig,axs = plt.subplots(r,c)
cnt = 0
for i in range(r):
for j in range(c):
xy = gen[cnt]
for k in range(len(xy)):
x = xy[k][0:30]
y = xy[k][30:60]
if k == 0:
axs[i,j].plot(x,y,color='blue')
if k == 1:
axs[i,j].plot(x,y,color='red')
if k == 2:
axs[i,j].plot(x,y,color='green')
plt.xlim(0.,1.)
plt.ylim(0.,1.)
plt.xticks(np.arange(0,1,0.1))
plt.xticks(np.arange(0,1,0.1))
axs[i,j].axis('off')
cnt += 1
if not os.path.exists("keras_imgs"):
os.makedirs("keras_imgs")
fig.savefig("keras_imgs/%d.png" % epoch)
plt.close()
def test(self,gen_nums=100,save=False):
self.generator.load_weights("keras_model/G_model14000.hdf5",by_name=True)
self.discriminator.load_weights("keras_model/D_model14000.hdf5",by_name=True)
noise = np.random.normal(0,1,(gen_nums,self.latent_dim))
gen = self.generator.predict(noise)
gen = 0.5 * gen + 0.5
gen = gen.reshape(-1,4,60)
print(gen.shape)
print(gen[0])
###############################################################
#直接可视化生成图片
if save:
for i in range(0,len(gen)):
plt.figure(figsize=(128,128),dpi=1)
plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue',linewidth=300)
plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red',linewidth=300)
plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green',linewidth=300)
plt.axis('off')
plt.xlim(0.,1.)
plt.ylim(0.,1.)
plt.xticks(np.arange(0,1,0.1))
plt.yticks(np.arange(0,1,0.1))
if not os.path.exists("keras_gen"):
os.makedirs("keras_gen")
plt.savefig("keras_gen"+os.sep+str(i)+'.jpg',dpi=1)
plt.close()
##################################################################
#重整图片到0-1
else:
for i in range(len(gen)):
plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue')
plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red')
plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green')
plt.xlim(0.,1.)
plt.ylim(0.,1.)
plt.xticks(np.arange(0,1,0.1))
plt.xticks(np.arange(0,1,0.1))
plt.show()
if __name__ == '__main__':
dcgan = DCGAN()
dcgan.train(epochs=40000, batch_size=64, sample_interval=1000)
# dcgan.test()
from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import numpy as np
import os
import random
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
np.set_printoptions(threshold=np.inf) #输出全部矩阵不带省略号
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 选择使用的GPU
import sys
import numpy as np
class DCGAN():
def __init__(self):
# Input shape
self.img_rows = 10
self.img_cols = 20
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.latent_dim = 100
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise as input and generates imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
valid = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
model = Sequential()
model.add(Dense(512 * 5 * 5, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((5, 5, 512)))
model.add(UpSampling2D(size=(1,1)))
model.add(Conv2D(512, kernel_size=(2,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D(size=(1,1)))
model.add(Conv2D(256, kernel_size=(2,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D(size=(1,1)))
model.add(Conv2D(128, kernel_size=(1,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D(size=(1,2)))
model.add(Conv2D(64, kernel_size=(2,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D(size=(2,2)))
model.add(Conv2D(32, kernel_size=(2,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(Conv2D(self.channels, kernel_size=(2,2), padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(32, kernel_size=3, strides=(2,2), input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, strides=(1,2), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=(1,1), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=3, strides=(1,1), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(512, kernel_size=3, strides=(1,1), padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
def train(self, epochs, batch_size=128, sample_interval=50):
############################################################
#自己数据集此部分需要更改
# 加载数据集
data = np.load('data/Men_546_Convergence.npy')
print(data.shape)
# 归一化到-1到1
data = data * 2 - 1
data = np.expand_dims(data, axis=3)
############################################################
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half of images
idx = np.random.randint(0, data.shape[0], batch_size)
imgs = data[idx]
# Sample noise and generate a batch of new images
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
gen_imgs = self.generator.predict(noise)
# Train the discriminator (real classified as ones and generated as zeros)
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Train the generator (wants discriminator to mistake images as real)
g_loss = self.combined.train_on_batch(noise, valid)
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.sample_images(epoch)
if not os.path.exists("keras_model"):
os.makedirs("keras_model")
self.generator.save_weights("keras_model/G_model%d.hdf5" % epoch,True)
self.discriminator.save_weights("keras_model/D_model%d.hdf5" %epoch,True)
def select_axis(self,data):
branch = []
data = data.reshape(-1,10,20)
data = data.tolist()
for i in range(len(data)):
zhu_x = data[i][0]
zuo_x = data[i][1]
you_x = data[i][2]
zhu_y = data[i][3]
zuo_y = data[i][4]
you_y = data[i][5]
zhu_diam = data[i][6]
zuo_diam = data[i][7]
you_diam = data[i][8]
zhu_x = zhu_x[0:zhu_diam[1::].index(max(zhu_diam[1::]))+1]
zuo_x = zuo_x[0:zuo_diam[1::].index(max(zuo_diam[1::]))+1]
you_x = you_x[0:you_diam[1::].index(max(you_diam[1::]))+1]
zhu_y = zhu_y[0:zhu_diam[1::].index(max(zhu_diam[1::]))+1]
zuo_y = zuo_y[0:zuo_diam[1::].index(max(zuo_diam[1::]))+1]
you_y = you_y[0:you_diam[1::].index(max(you_diam[1::]))+1]
zhu_xy = zhu_x + zhu_y
zuo_xy = zuo_x + zuo_y
you_xy = you_x + you_y
zhu = zhu_xy + [zhu_diam[0]]
zuo = zuo_xy + [zuo_diam[0]]
you = you_xy + [you_diam[0]]
fencha = [zhu] + [zuo] + [you]
branch.append(fencha)
return branch
def sample_images(self, epoch):
r, c = 10, 10
# 重新生成一批噪音,维度为(100,100)
noise = np.random.normal(0, 1, (r * c, self.latent_dim))
gen_imgs = self.generator.predict(noise)
# 将生成的图片重新归整到0-1之间
gen = 0.5 * gen_imgs + 0.5
gen = gen.reshape(-1,10,20)
gen_data = self.select_axis(gen)
fig,axs = plt.subplots(r,c)
cnt = 0
for i in range(r):
for j in range(c):
gen = gen_data[cnt]
zhu = gen[0]
zuo = gen[1]
you = gen[2]
zhu_diam = [zhu[-1]]
zuo_diam = [zuo[-1]]
you_diam = [you[-1]]
zhu_x = zhu[0:len(zhu)//2]
zuo_x = zuo[0:len(zuo)//2]
you_x = you[0:len(you)//2]
zhu_y = zhu[len(zhu)//2:(len(zhu)-1)]
zuo_y = zuo[len(zuo)//2:(len(zuo)-1)]
you_y = you[len(you)//2:(len(you)-1)]
axs[i,j].plot(zhu_x,zhu_y, color='red',linewidth=10*zhu_diam[0])
axs[i,j].plot(zuo_x,zuo_y, color='green',linewidth=10*zuo_diam[0])
axs[i,j].plot(you_x,you_y, color='blue',linewidth=10*you_diam[0])
plt.xlim(0.,1.)
plt.ylim(0.,1.)
plt.xticks(np.arange(0,1,0.1))
plt.yticks(np.arange(0,1,0.1))
axs[i,j].axis('off')
cnt += 1
if not os.path.exists("keras_imgs"):
os.makedirs("keras_imgs")
fig.savefig("keras_imgs/%d.png" % epoch)
plt.close()
def test(self,gen_nums=100,save=False):
self.generator.load_weights("keras_model/G_model14000.hdf5",by_name=True)
self.discriminator.load_weights("keras_model/D_model14000.hdf5",by_name=True)
noise = np.random.normal(0,1,(gen_nums,self.latent_dim))
gen = self.generator.predict(noise)
gen = 0.5 * gen + 0.5
gen = gen.reshape(-1,4,60)
print(gen.shape)
print(gen[0])
###############################################################
#直接可视化生成图片
if save:
for i in range(0,len(gen)):
plt.figure(figsize=(128,128),dpi=1)
plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue',linewidth=300)
plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red',linewidth=300)
plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green',linewidth=300)
plt.axis('off')
plt.xlim(0.,1.)
plt.ylim(0.,1.)
plt.xticks(np.arange(0,1,0.1))
plt.yticks(np.arange(0,1,0.1))
if not os.path.exists("keras_gen"):
os.makedirs("keras_gen")
plt.savefig("keras_gen"+os.sep+str(i)+'.jpg',dpi=1)
plt.close()
##################################################################
#重整图片到0-1
else:
for i in range(len(gen)):
plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue')
plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red')
plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green')
plt.xlim(0.,1.)
plt.ylim(0.,1.)
plt.xticks(np.arange(0,1,0.1))
plt.xticks(np.arange(0,1,0.1))
plt.show()
if __name__ == '__main__':
dcgan = DCGAN()
dcgan.train(epochs=500000, batch_size=64, sample_interval=1000)
# dcgan.test()