您当前的位置: 首页 > 

星夜孤帆

暂无认证

  • 3浏览

    0关注

    626博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

读取mnist二进制文件

星夜孤帆 发布时间:2018-09-30 00:14:34 ,浏览量:3

from __future__ import  division
import math
import random
import pprint
import scipy.misc
import numpy as np
from time import gmtime,strftime
from six.moves import xrange
import matplotlib.pyplot as plt
import os,gzip

import tensorflow as tf
import tensorflow.contrib.slim as slim

#读取mnist数据集
def load_mnist(data_dir):
    def extract_data(filename,num_data,head_size,data_size):
        #读取压缩文件
        with gzip.open(filename) as bytestream:
            bytestream.read(head_size)
            buf = bytestream.read(data_size * num_data)
            data = np.frombuffer(buf,dtype=np.uint8).astype(np.float)
        return data
    data = extract_data(data_dir+'/train-images-idx3-ubyte.gz',60000,16,28 * 28)
    trX = data.reshape(60000,28,28,1)
    data = extract_data(data_dir+'/train-labels-idx1-ubyte.gz',60000,8,1)
    trY = data.reshape(60000)
    data = extract_data(data_dir+'/t10k-images-idx3-ubyte.gz',10000,16,28 * 28)
    teX = data.reshape(10000,28,28,1)
    data = extract_data(data_dir+'/t10k-labels-idx1-ubyte.gz',10000,8,1)
    teY = data.reshape(10000)
    
    trY = np.asarray(trY)
    teY = np.asarray(teY)
    
    #分别将训练集和测试集数字和标签合在一起,标签y目前为0-9数字
    x = np.concatenate((trX,teX),axis=0)
    y = np.concatenate((trY,teY),axis=0).astype(np.int)
    
    seed = 547
    np.random.seed(seed)
    np.random.shuffle(x)
    np.random.seed(seed)
    np.random.shuffle(y)
    
    #将标签变为one_hot形式
    y_vec = np.zeros((len(y),10),dtype=np.float)
    for i,label in enumerate(y):
        y_vec[i,y[i]] = 1.0
        
    return x/255.,y_vec
train,label = load_mnist('data')
print(train.shape)
print(label.shape)

 

关注
打赏
1636984416
查看更多评论
立即登录/注册

微信扫码登录

0.1050s