您当前的位置: 首页 > 

HybridPose:混合表示下的6D对象姿态估计

发布时间:2020-10-16 12:00:00 ,浏览量:1

 

论文题目:HybridPose: 6D Object Pose Estimation under Hybrid Representations

论文地址:在公众号「3D视觉工坊」后台,回复「6D对象姿态估计」,即可直接下载。

摘要:本文介绍了HybridPose,这是一种新颖的6D对象姿态估计方法。HybridPose利用混合中间表示在输入图像中表达不同的几何信息,包括关键点,边缘矢量和对称对应关系。与单一表示相比,当一种类型的预测表示不准确时(例如,由于遮挡),本文的混合表示允许位姿回归利用更多不同的特征。HybridPose利用强大的回归模块来过滤预测的中间表示中的异常值。本文通过证明可以通过相同的简单神经网络预测所有中间表示而无需牺牲整体性能来展示HybridPose的鲁棒性。与最新的位姿估计方法相比,HybridPose在运行时间上具有可比性,并且准确性更高。例如,在Occlusion Linemod数据集上,本文的方法实现了30 fps的预测速度,平均ADD(-S)精度为79.2%,比当前的最新方法提高了67.4%。

一、简介

在本文中,本文介绍了HybridPose,它利用多个中间表示来表达输入图像中的几何信息以进行位姿估计。除关键点外,HybridPose还集成了一个预测网络,该网络可以输出相邻关键点之间的边缘矢量,如图1所示。由于大多数对象都具有(部分)反射对称性,因此HybridPose

关注
打赏
1688896170
查看更多评论

暂无认证

  • 1浏览

    0关注

    107388博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文
立即登录/注册

微信扫码登录

0.0750s