您当前的位置: 首页 >  ar

最新开源LiDAR数据集LSOOD:四种常见的室外物体分类

发布时间:2020-11-03 07:00:00 ,浏览量:1

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

标题:最新开源LiDAR数据集LSOOD:四种常见的室外物体分类

作者:Y Tian

来源:https://github.com/Tian-Yifei/LSOOD-LiDAR-Scanning-Outdoor-Object-Dataset

LSOOD数据集

LSOOD数据集(LiDAR Scanning Outdoor Object Dataset)由Velodyne32线激光雷达设备采集,包含四种常见的室外障碍物(行人、建筑、树木和灌木),可用于无人驾驶、遥感等领域的分类器训练。

由于现存的LiDAR扫描的物体分类数据集较少,较为知名的悉尼城市物体(Sydney Urban)数据集样本量小且种类较多,performance的提升难度较大。因此,LSOOD数据集更适合广大初学者,简单易懂的开始LiDAR物体分类的研究和学习。

该数据集从多个场景的中采集,例如道路,十字路口等。利用快速的空间聚类算法(Fast Spatial Clustering Method),将场景点云进行快速的实例分割,形成大量独立的物体点云。该算法在实例分割的过程中,每帧点云的处理速度为30ms左右。

由于LiDAR生成的点云数据具有稀疏、无纹理信息的特点,为了更加准确地判定物体的种类,该团队开发了如下图所示的半自动样本标记工具,结合障碍物周围的场景信息,提升障碍物的人工标签准确率。为了提升数据库中的点云样本质量,已将存在遮挡、结构不完整的点云样本剔除,尽可能保留结构较为完整的物体点云。

LSOOD数据集现有1056个障碍物样本,训练样本530个,测试样本526个。相较于现存的室外雷达点云分类公开数据集,LSOOD具有单个种类样本量大,点云样本质量较高,训练、测试集相对平衡等优势,易于初学者进行点云分类任务学习。不同于CAD模型生成的标准点云物体(如经典的ModelNet10/40),LSOOD数据集为LiDAR在真实场景下扫描得到,更适合应用于无人驾驶、智能机器人、遥感等多种领域。

目前LSOOD数据集包含建筑样本335,灌木223,行人83,及乔木415个。后续将公开更多的样本及分类类别。

LSOOD数据集中点云样本存储在.csv文件,每个.csv文件存储了不同的物体信息,包含了物体点云的x,y,z全局坐标(origin),物体中心为原点的局部坐标(relative),以及对象标签(object)。

LSOOD数据集可从github下载:

https://github.com/Tian-Yifei/LSOOD-LiDAR-Scanning-Outdoor-Object-Dataset

如果对实例分割的算法(快速的空间聚类)或物体标签标记工具感兴趣,具体细节请参考下述文章:

Y Tian,      W Song, L Chen, et al., A Fast Spatial Clustering Method for Sparse LiDAR      Point Clouds Using GPU Programming, Sensors 20 (8), 2309

W Song,      L Zhang, Y Tian, et al., CNN-based 3D object classification using Hough      space of LiDAR point clouds, Human-centric Computing and Information      Sciences 10 (1), 1-14

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

关注
打赏
1688896170
查看更多评论

暂无认证

  • 1浏览

    0关注

    106485博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文
立即登录/注册

微信扫码登录

0.0465s