论文题目:6D Pose Estimation using an Improved Method based on Point Pair Features
作者:Joel Vidal, Chyi-Yeu Lin
译者:仲夏夜之星
文献下载:在公众号「3D视觉工坊」后台,回复「改进的点对特征」,即可获取论文。
摘要:点对特征是基于模型的6D位姿估计方法中最成功的一种,作为传统的局部和全局管道的一种高效、综合和折衷的替代方法。在过去的几年里,已经提出了几种不同的算法。Hinterstoisser等人提出的解决方案是一个主要贡献。在2017年ICCV第三届关于恢复6D物体姿态的国际研讨会上,本研究提出了一种适用于SIXD挑战数据集的PPF方法的变体,所有数据集的平均召回率为0.77,而对hinterstoisser、tless、tudlight、rutgers、tejani和doumanoglou数据集的总体召回率分别为0.82、0.67、0.85、0.37、0.97和0.96。
一 引言三维目标识别,特别是6D位姿估计问题是目标处理中的关键步骤。在过去的几十年里,3D数据和基于特征的方法已经在基于模型的方法获得广泛的声誉。一般来说,基于模型的方法分为两大类:全局方法和局部方法。全局方法使用一个全局描述描述整个对象或其部分。局部方法通过使用围绕特定点的局部描述符来描述对象。全局描述通常需要对目标对象或目标部分进行分割,而忽略了局部细节的区分性。这些特征使得全局方法在遮挡和高度杂乱的场景下不健壮。另一方面,由于传感器噪声的局部性质,局部方法通常对传感器噪声更敏感,并且它们倾向于在具有重复特征的对称对象或对象上表现出较低的性能。
在三维目