您当前的位置: 首页 > 

遥感图像中的小物体检测(内有新数据集)

发布时间:2021-01-24 00:00:00 ,浏览量:0

文章:Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network

摘要:

与大物体相比,遥感图像中的小物体检测性能并不理想,尤其是在低分辨率和嘈杂的图像中。一种基于生成对抗网络(GAN)的模型,称为增强超分辨率GAN(ESRGAN),具有出色的图像增强性能,但是重建的图像通常会丢失高频边缘信息。因此,物体检测性能在恢复的噪点和低分辨率遥感影像上显示出小目标物体的退化。受边缘增强GAN(EEGAN)和ESRGAN成功的启发,本研究使用了一种新型的边缘增强超分辨率GAN(EESRGAN)来改善遥感图像的质量,并以端到端的方式使用了不同的探测器网络,将检测器损耗反向传播到EESRGAN中,以提高检测性能。研究人员提出了一种包含三个组件的体系结构:ESRGAN,EEN (边缘增强网络)和检测网络。对于ESRGAN和EEN,使用了RRDB(残差密集块),对于检测器网络,我们使用了更快的基于区域的FRCNN(两阶段检测器)和SSD(一级检测器)。在相关数据集上进行的大量实验表明,该方法具有出色的性能。

研究背景及问题:

遥感图像目标检测在环境监管、监视、军事、国家安全、交通、林业、油气活动监测等领域具有广泛的应用前景,然而,目前的目标检测技术对于包含噪声和低分辨率的遥感图像而言,尤其是对于图像中的小目标,其检测效果并不理想,即使在高分辨率图像上,对小目标的检测性能也远低于对大目标的检测性能。其次,大面积高分辨率影像的成本较大&

关注
打赏
1688896170
查看更多评论

暂无认证

  • 0浏览

    0关注

    109966博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文
立即登录/注册

微信扫码登录

0.0458s