目前深度学习应用广发, 其中 AI 推理的在线服务是其中一个重要的可落地的应用场景。本文将为大家介绍使用函数计算部署深度学习 AI 推理的最佳实践, 其中包括使用 FUN 工具一键部署安装第三方依赖、一键部署、本地调试以及压测评估, 全方位展现函数计算的开发敏捷特性、自动弹性伸缩能力、免运维和完善的监控设施。
1.1 DEMO 概述通过上传一个猫或者狗的照片, 识别出这个照片里面的动物是猫还是狗
- DEMO 示例效果入口: http://sz.mofangdegisn.cn
- DEMO 示例工程地址: https://github.com/awesome-fc/cat-dog-classify
开通服务
免费开通函数计算, 按量付费,函数计算有很大的免费额度。
免费开通文件存储服务NAS, 按量付费
1.2 解决方案如上图所示, 当多个用户通过对外提供的 url 访问推理服务时候,每秒的请求几百上千都没有关系, 函数计算平台会自动伸缩, 提供足够的执行实例来响应用户的请求, 同时函数计算提供了完善的监控设施来监控您的函数运行情况。
1.3. Serverless 方案与传统自建服务方案对比 1.3.1 卓越的工程效率 自建服务函数计算 Serverless基础设施需要用户采购和管理无开发效率除了必要的业务逻辑开发,需要自己建立相同线上运行环境, 包括相关软件的安装、服务配置、安全更新等一系列问题只需要专注业务逻辑的开发, 配合 FUN 工具一键资源编排和部署学习上手成本可能使用 K8S 或弹性伸缩( ESS ),需要了解更多的产品、名词和参数的意义会编写对应的语言的函数代码即可 1.3.2 弹性伸缩免运维 自建服务函数计算 Serverless弹性高可用需要自建负载均衡 (SLB),弹性伸缩,扩容缩容速度较 FC 慢FC系统固有毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,免运维监控报警查询ECS 级别的 metrics提供更细粒度的函数执行情况,每次访问函数执行的 latency 和日志等, 更加完善的报警监控机制 1.3.3 更低的成本- 函数计算 (FC) 固有自动伸缩和负载均衡功能,用户不需要购买负载均衡 (SLB) 和弹性伸缩。
- 具有明显波峰波谷的用户访问场景(比如只有部分时间段有请求,其他时间甚至没有请求),选择按需付费,只需为实际使用的计算资源付费。
对于明显波峰波谷或者稀疏调用具有低成本优势, 同时还保持了弹性能力,以后业务规模做大以后并没有技术切换成本,同时财务成本增长配合预付费也能保持平滑。
- 部分请求持续平稳的场景下,可以配合预付费解决按需付费较高单价问题。函数计算成本优化最佳实践文档。
假设有一个在线计算服务,由于是CPU 密集型计算, 因此在这里我们将平均 CPU 利用率作为核心参考指标对成本,以一个月为周期,10台 C5 ECS 的总计算力为例,总的计算量约为 30% 场景下, 各解决方案 CPU 资源利用率使用情况示意图大致如下:
由上图预估出如下计费模型:
- 函数计算预付费 3CU 一个月: 246.27 元, 计算能力等价于 ECS 计算型 C5
- ECS 计算型 C5 (2vCPU,4GB)+云盘: 包月219 元,按量: 446.4 元
- 包月10 Mbps 的 SLB: 526.52 元(这里做了一定的流量假设), 弹性伸缩免费
- 饱和使用下,函数计算按量付费的一台机器成本约为按量付费 C5 ECS 的2 倍
关注
打赏
