人工智能如何发展出像人类具备逻辑、意识和推理的认知能力,是人工智能研究一直在探索的方向。 “目前来看,通过大规模数据训练超大参数量的巨量模型,被认为是非常有希望实现通用人工智能的一个重要方向。”王恩东认为,随着巨量模型的兴起,巨量化已成为未来人工智能发展非常重要的一个趋势。 全球知名的AI领先公司都在巨量模型上予以重兵投入,谷歌、微软、英伟达、浪潮、智源研究院、百度、阿里等公司相继推出了各自的巨量模型。 王恩东介绍,巨量化的一个核心特征就是模型参数多、训练数据量大。“以‘源1.0’为例,其参数量高达2457亿,训练数据集规模达到5000GB。” 应用面临困局,人工智能如何跟应用场景结合 很多人会有这样的困惑:人工智能那么好,但是怎么跟我的业务、应用场景结合?我想通过AI技术做智能化转型,但是没人懂算法懂模型,也缺少好用的AI开发平台,算法模型那么多,如何找到不同算法在应用中的最优组合? “懂这些的人,往往都集中在科研机构或者头部公司。这些地方集中了最优秀的AI人才,但缺少对传统行业的需求场景、业务规律的深入理解。”对于当前人工智能从技术到应用所面临的困局,王恩东指出。 来自埃森哲的一份调研报告显示,70%以上有技术的研究机构、科技公司缺需求场景、领域知识和数据,70%以上的行业用户缺技术人才、AI平台和实践能力。 王恩东认为,目前人工智能的技术、产业链条脱节,生态离散化成为制约人工智能技术上水平、应用上规模、产业上台阶的瓶颈。“要想释放多元算力价值、促进人工智能创新,既要重视智算系统的创新,加大人工智能新型基础设施建设,把从技术到应用的链条设计好,从体系结构、芯片设计、系统设计、系统软件、开发环境等各个领域形成分工明确而又协同创新的局面,又要加快推动开放标准建设,通过统一、规范的标准,将多元化算力转变为可调度的资源,让算力好用、易用。”
人工智能如何发展出像人类的逻辑 如何跟应用场景结合
关注
打赏