- 1. 概述
- 1.1 相关地址
- 1.2 组件分工
- 2. docker安装部署
- 官网
- elk镜像仓库
- filebeat:部署在每台应用服务器、数据库、中间件中,负责日志抓取与日志聚合
- 日志聚合:把多行日志合并成一条,例如exception的堆栈信息等
- logstash:通过各种filter结构化日志信息,并把字段transform成对应的类型
- elasticsearch:负责存储和查询日志信息
- kibana:通过ui展示日志信息、还能生成饼图、柱状图等
step1:修改mmap计数大于等于262144的限制
#在/etc/sysctl.conf文件最后添加一行
vm.max_map_count=655360
#并执行命令
sysctl -p
step2:下载并运行镜像
docker run -p 5601:5601 -p 9200:9200 -p 9300:9300 -p 5044:5044 --name elk -d sebp/elk:651
step3:准备elasticsearch的配置文件
mkdir /opt/elk/elasticsearch/conf
#复制elasticsearch的配置出来
docker cp elk:/etc/elasticsearch/elasticsearch.yml /opt/elk/elasticsearch/conf
step4:修改elasticsearch.yml配置
修改cluster.name参数
cluster.name: my-es
在最后新增以下三个参数:
thread_pool.bulk.queue_size: 1000
http.cors.enabled: true
http.cors.allow-origin: "*"
step5:准备logstash的配置文件
mkdir /opt/elk/logstash/conf
#复制logstash的配置出来
docker cp elk:/etc/logstash/conf.d/. /opt/elk/logstash/conf/
step6:准备logstash的patterns文件
新建一个java的patterns文件
mkdir /opt/elk/logstash/patterns
vim java 内容如下:
# user-center
MYAPPNAME ([0-9a-zA-Z_-]*)
# RMI TCP Connection(2)-127.0.0.1
MYTHREADNAME ([0-9a-zA-Z._-]|\(|\)|\s)*
就是一个名字叫做java的文件,不需要文件后缀
step7:删除02-beats-input.conf的最后三句,去掉强制认证
vim /opt/elk/logstash/conf/02-beats-input.conf
#ssl => true
#ssl_certificate => "/pki/tls/certs/logstash.crt"
#ssl_key => "/pki/tls/private/logstash.key"
step8:修改10-syslog.conf配置,改为以下内容
- 注意,下面的logstash结构化配置样例都是以本工程的日志格式配置,并不是通用的
filter {
if [type] == "syslog" {
grok {
match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp} %{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?: %{GREEDYDATA:syslog_message}" }
add_field => [ "received_at", "%{@timestamp}" ]
add_field => [ "received_from", "%{host}" ]
}
syslog_pri { }
date {
match => [ "syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss" ]
}
}
if [fields][docType] == "sys-log" {
grok {
patterns_dir => ["/opt/elk/logstash/patterns"]
match => { "message" => "\[%{NOTSPACE:appName}:%{NOTSPACE:serverIp}:%{NOTSPACE:serverPort}\] %{TIMESTAMP_ISO8601:logTime} %{LOGLEVEL:logLevel} %{WORD:pid} \[%{MYAPPNAME:traceId}\] \[%{MYTHREADNAME:threadName}\] %{NOTSPACE:classname} %{GREEDYDATA:message}" }
overwrite => ["message"]
}
date {
match => ["logTime","yyyy-MM-dd HH:mm:ss.SSS Z"]
}
date {
match => ["logTime","yyyy-MM-dd HH:mm:ss.SSS"]
target => "timestamp"
locale => "en"
timezone => "+08:00"
}
mutate {
remove_field => "logTime"
remove_field => "@version"
remove_field => "host"
remove_field => "offset"
}
}
if [fields][docType] == "point-log" {
grok {
patterns_dir => ["/opt/elk/logstash/patterns"]
match => {
"message" => "%{TIMESTAMP_ISO8601:logTime}\|%{MYAPPNAME:appName}\|%{WORD:resouceid}\|%{MYAPPNAME:type}\|%{GREEDYDATA:object}"
}
}
kv {
source => "object"
field_split => "&"
value_split => "="
}
date {
match => ["logTime","yyyy-MM-dd HH:mm:ss.SSS Z"]
}
date {
match => ["logTime","yyyy-MM-dd HH:mm:ss.SSS"]
target => "timestamp"
locale => "en"
timezone => "+08:00"
}
mutate {
remove_field => "logTime"
remove_field => "@version"
remove_field => "host"
remove_field => "offset"
}
}
}
step9:修改30-output.conf配置,改为以下内容
output {
if [fields][docType] == "sys-log" {
elasticsearch {
hosts => ["localhost"]
manage_template => false
index => "sys-log-%{+YYYY.MM.dd}"
document_type => "%{[@metadata][type]}"
}
}
if [fields][docType] == "point-log" {
elasticsearch {
hosts => ["localhost"]
manage_template => false
index => "point-log-%{+YYYY.MM.dd}"
document_type => "%{[@metadata][type]}"
routing => "%{type}"
}
}
}
step10:创建运行脚本
vim /opt/elk/start.sh
docker stop elk
docker rm elk
docker run -p 5601:5601 -p 9200:9200 -p 9300:9300 -p 5044:5044 \
-e LS_HEAP_SIZE="1g" -e ES_JAVA_OPTS="-Xms2g -Xmx2g" \
-v $PWD/elasticsearch/data:/var/lib/elasticsearch \
-v $PWD/elasticsearch/plugins:/opt/elasticsearch/plugins \
-v $PWD/logstash/conf:/etc/logstash/conf.d \
-v $PWD/logstash/patterns:/opt/logstash/patterns \
-v $PWD/elasticsearch/conf/elasticsearch.yml:/etc/elasticsearch/elasticsearch.yml \
-v $PWD/elasticsearch/log:/var/log/elasticsearch \
-v $PWD/logstash/log:/var/log/logstash \
--name elk \
-d sebp/elk:651
step11:运行镜像
sh start.sh
step12:添加索引模板(非必需)
如果是单节点的es需要去掉索引的副本配置,不然会出现unassigned_shards
1.更新已有索引
curl -X PUT "http://192.168.28.130:9200/sys-log-*/_settings" -H 'Content-Type: application/json' -d'
{
"index" : {
"number_of_replicas" : 0
}
}
'
curl -X PUT "http://192.168.28.130:9200/mysql-slowlog-*/_settings" -H 'Content-Type: application/json' -d'
{
"index" : {
"number_of_replicas" : 0
}
}'
2.设置索引模板
系统日志
curl -XPUT http://192.168.28.130:9200/_template/template_sys_log -H 'Content-Type: application/json' -d '
{
"index_patterns" : ["sys-log-*"],
"order" : 0,
"settings" : {
"number_of_replicas" : 0
},
"mappings": {
"doc": {
"properties": {
"message": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
},
"analyzer": "ik_max_word"
},
"pid": {
"type": "text"
},
"serverPort": {
"type": "text"
},
"logLevel": {
"type": "text"
},
"traceId": {
"type": "text"
}
}
}
}
}'
慢sql日志
curl -XPUT http://192.168.28.130:9200/_template/template_sql_slowlog -H 'Content-Type: application/json' -d '
{
"index_patterns" : ["mysql-slowlog-*"],
"order" : 0,
"settings" : {
"number_of_replicas" : 0
},
"mappings": {
"doc": {
"properties": {
"query_str": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
},
"analyzer": "ik_max_word"
}
}
}
}
}'
埋点日志
curl -XPUT http://192.168.28.130:9200/_template/template_point_log -H 'Content-Type: application/json' -d '
{
"index_patterns" : ["point-log-*"],
"order" : 0,
"settings" : {
"number_of_shards" : 2,
"number_of_replicas" : 0
}
}'
step13:安装IK分词器
查询数据,都是使用的默认的分词器,分词效果不太理想,会把text的字段分成一个一个汉字,然后搜索的时候也会把搜索的句子进行分词,所以这里就需要更加智能的分词器IK分词器了
1.下载
- 下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases
- 这里你需要根据你的Es的版本来下载对应版本的IK
2.解压 将文件复制到 es的安装目录/plugin/ik下面即可,完成之后效果如下:
3.重启容器并检查插件是否安装成功
http://192.168.28.130:9200/_cat/plugins
step14:配置样例 链接: https://pan.baidu.com/s/1Qq3ywAbXMMRYyYxBAViMag 提取码: aubp