目录
Part1 领域介绍
推荐教材
推荐公开课
Part2 时序Python库
Part3 相关模型
Time Series Forecasting
Time Series Classification
Anomaly Detection
Time Series Representation
Data Augmentation
Part4 时序数据集
参考
Part1 领域介绍Time series is a series of data points indexed in time order.
时间序列分析具体包括的任务:
-
检索Indexing (query by content)
: given a time series and some similarity measure, find the nearest matching time series. -
聚类Clustering
: find groups (clusters) of similar time series. -
分类Classification
: assign a time series to a predefined class. -
分割Segmentation (Summarization)
: create an accurate approximation of a time series by reducing its dimensionality while retaining its essential features. -
预测Forecasting (Prediction)
: given a time series dataset up to a given time tn, forecast the next values. -
异常检测Anomaly Detection
: find abnormal data points or subsequences. -
因果分析Rules Discovery
: find the rules that may govern associations between sets of time series or subsequences
-
Forecasting: Principles and Practice,第三版(英文),第二版(中文)
-
Intel 时间序列分析:讲授时间序列分析,以及用于预测、处理和识别顺序数据的方法。
-
时间序列和平稳数据简介
-
数据平滑化、自相关性和自回归积分滑动平均 (ARIMA) 模型等应用
-
高级时间序列概念,如卡尔曼滤波器 (Kalman Filter) 和傅里叶变换 (Fourier Transformation)
-
用于时间序列分析的深度学习架构和方法
-
-
Kats,推荐指数:⭐⭐
-
主页:https://facebookresearch.github.io/Kats/
-
Github:https://github.com/facebookresearch/Kats
-
-
darts,推荐指数:⭐⭐
-
介绍:a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks.
-
主页:https://unit8co.github.io/darts/
-
Github:https://github.com/unit8co/darts
-
-
GluonTS,推荐指数:⭐⭐⭐⭐
-
主页:https://ts.gluon.ai/index.html
-
Github:https://github.com/awslabs/gluon-ts/
-
-
NeuralProphet,推荐指数:⭐⭐⭐⭐
-
主页:https://neuralprophet.com/
-
Github:https://github.com/ourownstory/neural_prophet
-
-
arch
-
介绍:Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python.
-
主页:https://arch.readthedocs.io/en/latest/
-
Github:https://github.com/bashtage/arch
-
-
AtsPy
-
介绍:Automated Time Series Models in Python
-
Github:https://github.com/firmai/atspy
-
-
banpei
-
介绍:Anomaly detection library based on singular spectrum transformation
-
Github:https://github.com/tsurubee/banpei
-
-
cesium
-
介绍:end-to-end machine learning platform for time-series, from calculation of features to model-building to predictions.
-
主页:https://cesium-ml.org/
-
Github:https://github.com/cesium-ml/cesium
-
-
pyfbad
-
Github:https://github.com/Teknasyon-Teknoloji/pyfbad
-
更多的模型介绍可以查阅论文[arxiv 2021]A systematic review of Python packages for time series analysis.
Part3 相关模型 Time Series Forecasting ModelUnivariateMultivariateProbabilisticMultiple-series trainingARIMA
✅✅VARIMA
✅✅AutoARIMA
✅ExponentialSmoothing
✅✅Theta
and FourTheta
✅Prophet
✅✅FFT
(Fast Fourier Transform)✅RegressionModel
(incl RandomForest
, LinearRegressionModel
and LightGBMModel
)✅✅✅RNNModel
(incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version✅✅✅✅BlockRNNModel
(incl. LSTM and GRU)✅✅✅✅NBEATSModel
✅✅✅✅TCNModel
✅✅✅✅TransformerModel
✅✅✅✅TFTModel
(Temporal Fusion Transformer)✅✅✅✅Naive Baselines✅
Time Series Classification
-
LSTM FCN,LSTM Fully Convolutional Networks for Time Series Classification
-
[AAAI 2022] Towards a Rigorous Evaluation of Time-series Anomaly Detection
-
[AAAI 2022] TS2Vec: Towards Universal Representation of Time Series
-
[IJCAI 2021] Time Series Data Augmentation for Deep Learning: A Survey
-
[arxiv 2020] An empirical survey of data augmentation for time series classification with neural networks
-
UCR Time Series Classification Archive
-
UEA & UCR Time Series Classification Repository
时序资料汇总:模型和常见库对比