集成学习之Bagging
1 Bagging集成原理
目标:把下面的圈和方块进行分类
【此时用直线很难把圈和方块分开的】
实现过程:
1.采样不同数据集
2.训练分类器
3.平权投票,获取最终结果
4.主要实现过程小结
在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。
随机森林 = Bagging + 决策树
例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个树的结果是False, 那么最终投票结果就是True
随机森林构造过程中的关键步骤(用N来表示训练用例(样本)的个数,M表示特征数目):
1)一次随机选出一个样本,有放回的抽样,重复N次(有可能出现重复的样本)
2) 随机去选出m个特征, m
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?