聚类算法之特征降维-特征选择、主成分分析
1 降维
1.1 定义 【就是改变特征值,选择哪列保留,哪列删除;目标是得到一组“不相关”的主变量】
降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程
-
降低随机变量的个数
- 相关特征(correlated feature)
- 相对湿度与降雨量之间的相关
- 等等
正是因为在进行训练的时候,我们都是使用特征进行学习。如果特征本身存在问题或者特征之间相关性较强,对于算法学习预测会影响较大
1.2 降维的两种方式- 特征选择
- 主成分分析(可以理解一种特征提取的方式)
数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。
- Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
- 方差选择法:低方差特征过滤
- 相关系数
- Embedded (嵌入式):算法自动选择特征(特征与目标值之间的关联)
- 决策树:信息熵、信息增益
- 正则化:L1、L2
- 深度学习:卷积等
删除低方差的一些特征,前面讲过方差的意义。再结合方差的大小来考虑这个方式的角度。
- 特征方差小:某个特征大多样本的值比较相近
- 特征方差大:某个特征很多样本的值都有差别
2.3.1 API
- sklearn.feature_selection.VarianceThreshold(threshold = 0.0) 【threshold这个参数必须得传】
- 删除所有低方差特征
- Variance.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。
2.3.2 数据计算
我们对某些股票的指标特征之间进行一个筛选,除去'index,'date','return'列不考虑(这些类型不匹配,也不是所需要指标)
一共这些特征
pe_ratio,pb_ratio,market_cap,return_on_asset_net_profit,du_return_on_equity,ev,earnings_per_share,revenue,total_expense
index,pe_ratio,pb_ratio,market_cap,return_on_asset_net_profit,du_return_on_equity,ev,earnings_per_share,revenue,total_expense,date,return
0,000001.XSHE,5.9572,1.1818,85252550922.0,0.8008,14.9403,1211444855670.0,2.01,20701401000.0,10882540000.0,2012-01-31,0.027657228229937388
1,000002.XSHE,7.0289,1.588,84113358168.0,1.6463,7.8656,300252061695.0,0.326,29308369223.2,23783476901.2,2012-01-31,0.08235182370820669
2,000008.XSHE,-262.7461,7.0003,517045520.0,-0.5678,-0.5943,770517752.56,-0.006,11679829.03,12030080.04,2012-01-31,0.09978900335112327
3,000060.XSHE,16.476,3.7146,19680455995.0,5.6036,14.617,28009159184.6,0.35,9189386877.65,7935542726.05,2012-01-31,0.12159482758620697
4,000069.XSHE,12.5878,2.5616,41727214853.0,2.8729,10.9097,81247380359.0,0.271,8951453490.28,7091397989.13,2012-01-31,-0.0026808154146886697
- 分析
1、初始化VarianceThreshold,指定阀值方差
2、调用fit_transform 【在特征降维中,不需要对目标值进行降维,只对特征值进行特征降维】
import pandas as pd
from sklearn.feature_selection import VarianceThreshold
def variance_demo():
"""
删除低方差特征--特征选择
:return: None
"""
data = pd.read_csv('./factor_returns.csv')
print(data)
# 1.实例化一个转换器类
transfer = VarianceThreshold(threshold=1)
# 2.调用fit_transform
data = transfer.fit_transform(data.iloc[:, 1:10]) # 除去'index,'date','return'列不考虑(这些类型不匹配,也不是所需要指标)
print('删除低方差特征的结果:\n', data)
print("形状:\n", data.shape)
return None
variance_demo()
运行结果:
index pe_ratio pb_ratio ... total_expense date return
0 000001.XSHE 5.9572 1.1818 ... 1.088254e+10 2012-01-31 0.027657
1 000002.XSHE 7.0289 1.5880 ... 2.378348e+10 2012-01-31 0.082352
2 000008.XSHE -262.7461 7.0003 ... 1.203008e+07 2012-01-31 0.099789
3 000060.XSHE 16.4760 3.7146 ... 7.935543e+09 2012-01-31 0.121595
4 000069.XSHE 12.5878 2.5616 ... 7.091398e+09 2012-01-31 -0.002681
... ... ... ... ... ... ... ...
2313 601888.XSHG 25.0848 4.2323 ... 1.041419e+10 2012-11-30 0.060727
2314 601901.XSHG 59.4849 1.6392 ... 1.089783e+09 2012-11-30 0.179148
2315 601933.XSHG 39.5523 4.0052 ... 1.749295e+10 2012-11-30 0.137134
2316 601958.XSHG 52.5408 2.4646 ... 6.009007e+09 2012-11-30 0.149167
2317 601989.XSHG 14.2203 1.4103 ... 4.132842e+10 2012-11-30 0.183629
[2318 rows x 12 columns]
删除低方差特征的结果:
[[ 5.95720000e+00 1.18180000e+00 8.52525509e+10 ... 1.21144486e+12
2.07014010e+10 1.08825400e+10]
[ 7.02890000e+00 1.58800000e+00 8.41133582e+10 ... 3.00252062e+11
2.93083692e+10 2.37834769e+10]
[-2.62746100e+02 7.00030000e+00 5.17045520e+08 ... 7.70517753e+08
1.16798290e+07 1.20300800e+07]
...
[ 3.95523000e+01 4.00520000e+00 1.70243430e+10 ... 2.42081699e+10
1.78908166e+10 1.74929478e+10]
[ 5.25408000e+01 2.46460000e+00 3.28790988e+10 ... 3.88380258e+10
6.46539204e+09 6.00900728e+09]
[ 1.42203000e+01 1.41030000e+00 5.91108572e+10 ... 2.02066110e+11
4.50987171e+10 4.13284212e+10]]
形状:
(2318, 8)
【从运行结果可以看出,列数减少了,由本来的12列,经过代码处理选择1:10列,代码降维处理是减少了1列】
2.4 相关系数- 主要实现方式:
- 皮尔逊相关系数
- 斯皮尔曼相关系数
2.4.1 皮尔逊相关系数(Pearson Correlation Coefficient)
1.作用
反映变量之间相关关系密切程度的统计指标
2.公式计算案例
公式
举例
- 比如说我们计算年广告费投入与月均销售额
那么之间的相关系数怎么计算
最终计算:
所以我们最终得出结论是广告投入费与月平均销售额之间有高度的正相关关系。
3.特点
相关系数的值介于–1与+1之间,即–1≤ r ≤+1。其性质如下:
- 当r>0时,表示两变量正相关,r
关注打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?