编辑丨CV技术指南
前言 Anchor-free 目标检测是目标检测近几年的主流趋势之一,本文将分享一个汇总了最近几年所有Anchor-free论文的github项目。
Anchor-free目标检测
项目作者:Xin Zhang, Xuesong Wang, nuo xu
https://github.com/XinZhangNLPR/awesome-anchor-free-object-detection
本项目共计涵盖 24篇anchor-free目标检测论文,其中论文大多为顶会且已开源!
论文以年份进行归类划分(从2015到2020)
每篇论文给出了是否收录的状态(如arXiv,CVPR)
已开源的论文给出了相应实现的框架名称(如PyTorch)
已开源的论文star数量>100,则带有 🔥 标识
[arXiv] AutoAssign: Differentiable Label Assignment for Dense Object Detection.
[arXiv] RepPoints V2: Verification Meets Regression for Object Detection. [pytorch]🔥
[ECCV] Corner Proposal Network for Anchor-free, Two-stage Object Detection. [Available soon]
[ECCV] HoughNet: Integrating near and long-range evidence for bottom-up object detection. [pytorch]
[CVPR] Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection. [pytorch]🔥
[CVPR] Soft Anchor-Point Object Detection. [Keras]
[CVPR] CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection. [pytorch]🔥
[arXiv] SaccadeNet: A Fast and Accurate Object Detector. [pytorch]
[arXiv] Localization Uncertainty Estimation for Anchor-Free Object Detection.
[ECCV] Dense RepPoints: Representing Visual Objects with Dense Point Sets. [pytorch]
[ECCV] BorderDet: Border Feature for Dense Object Detection. [pytorch]🔥
2019
[ICCV] RepPoints: Point Set Representation for Object Detection. [pytorch]🔥
[arXiv] Segmentation is All You Need.
[arXiv] FCOS: Fully Convolutional One-Stage Object Detection. [pytorch]🔥
[arXiv] CenterNet: Keypoint Triplets for Object Detection. [pytorch]🔥
[arXiv] Objects as Points. [pytorch]🔥
[arXiv] FoveaBox: Beyond Anchor-based Object Detector. [pytorch]🔥
[CVPR] Feature Selective Anchor-Free Module for Single-Shot Object Detection. [pytorch]🔥
[arXiv] ExtremeNet: Bottom-up Object Detection by Grouping Extreme and Center Points. [pytorch]🔥
2018
[ECCV] CornerNet: Detecting Objects as Paired Keypoints. [pytorch]🔥
[arXiv] An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches.
2016
[CVPR] You Only Look Once: Unified, Real-Time Object Detection. [tensorflow] [darknet]🔥
[acm multimedia] UnitBox: An Advanced Object Detection Network. [tensorflow]
2015
[arXiv] DenseBox: Unifying Landmark Localization with End to End Object Detection. [caffe]
https://github.com/XinZhangNLPR/awesome-anchor-free-object-detection
本文仅做学术分享,如有侵权,请联系删文。
3D视觉精品课程推荐:
1.面向自动驾驶领域的多传感器数据融合技术
2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进4.国内首个面向工业级实战的点云处理课程5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)
9.从零搭建一套结构光3D重建系统[理论+源码+实践]
10.单目深度估计方法:算法梳理与代码实现
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~