您当前的位置: 首页 >  大数据

段智华

暂无认证

  • 2浏览

    0关注

    1232博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

大数据Spark “蘑菇云”行动第92课:HIVE中的array、map、struct及自定义数据类型案例实战

段智华 发布时间:2016-12-05 21:08:12 ,浏览量:2

  大数据Spark “蘑菇云”行动第92课:HIVE中的array、map、struct及自定义数据类型案例实战   //数组方式 hive> use default; CREATE TABLE employee_array(userid ,INT,name String,address String, salarys array,gendre string)  ROW FORMAT DELIMITED FIELDS  TERMINATED BY '\t'  COLLECTION ITEMS  TERMINATED BY '|'  LINES TERMINATED BY '\n 'STORED AS TEXTFILE;   LOAD DATA LOCAL INPATH ' / .../EMPLOYEE.TXT' INTO TABLE employee_array; SELECT * FROM employee_array; SELECT name, salarys[2] FROM employee_array; 数组数据加了一些数据,重来 drop  TABLE employee_array; CREATE TABLE employee_array(userid ,INT,name String,address String, salarys array,gendre string)  ROW FORMAT DELIMITED FIELDS  TERMINATED BY '\t'  COLLECTION ITEMS  TERMINATED BY '|'  LINES TERMINATED BY '\n 'STORED AS TEXTFILE;   LOAD DATA LOCAL INPATH ' / .../EMPLOYEE.TXT' INTO TABLE employee_array; select userid,size(salarys) as length from employee_array;//函数计算数组长度 select * from  employee_array where array_contains(salarys ,12000)//达到过12000 //map方式 CREATE TABLE employee_map(userid ,INT,name String,address String, salarys MAP,gendre string)  ROW FORMAT DELIMITED FIELDS  TERMINATED BY '\t'  COLLECTION ITEMS  TERMINATED BY '|' MAP KEYS TERMINATED BY '=' LINES TERMINATED BY '\n 'STORED AS TEXTFILE;   LOAD DATA LOCAL INPATH ' / .../EMPLOYEE.TXT' INTO TABLE employee_array; select * from employee_map; SELECT userid, salaries['3rd'] from employee_map; //struct 方式 CREATE TABLE employee_struct(userid ,INT,name String,address String, salaryslevel struct,gendre  string)  ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'  COLLECTION ITEMS  TERMINATED BY '|' LINES TERMINATED BY '\n 'STORED AS TEXTFILE;   LOAD DATA LOCAL INPATH ' / .../EMPLOYEE.TXT' INTO TABLE employee_array; select * from employee_struct; select name, salaryslevel .level from employee_struct; 今日作业,通过SerDes的方式对一下数据进行Hive的存储和查询操作: 0^^Hadoop^^America^^5000|8000|12000|level8^^male 1^^Spark^^America^^8000|10000|15000|level9^^famale 2^^Flink^^America^^7000|8000|13000|level10^^male 3^^Hadoop^^America^^9000|11000|12000|level10^^famale 4^^Spark^^America^^10000|11000|12000|level12^^male 5^^Flink^^America^^11000|12000|18000|level18^^famale 6^^Hadoop^^America^^15000|16000|19000|level16^^male 7^^Spark^^America^^18000|19000|20000|level20^^male 8^^Flink^^America^^15000|16000|19000|level19^^male

关注
打赏
1659361485
查看更多评论
立即登录/注册

微信扫码登录

0.0769s