Spark Structured Streaming 实现自定义数据源:
Spark Streaming 查询使用微批处理引擎进行处理,微批处理引擎将 data streams 作为一系列小批处理作业进行处理,从Spark 2.3以来,Spark引入了一种新的低延迟处理模式,称为连续处理,可以实现毫秒级的端到端延迟。
Spark Structured Streaming Demo:
main.scala
package org.apache.spark.sql.structured
import java.util.concurrent.TimeUnit
import org.apache.spark.sql.streaming.{StreamingQuery, Trigger}
import org.apache.spark.sql.{DataFrame, SparkSession}
object Main extends App {
val spark = SparkSession
.builder
.master("local[*]")
.appName("Demo Source (DSv1 / Micro-Batch)")
.getOrCreate
println(s"This is Spark v${spark.version}")
val data: DataFrame = spark
.readStream
.format("org.apache.spark.sql.structured.DemoSourceProvider") //
关注
打赏
热门博文
- 计算机视觉系列 -MMDetection 之MobileNetV2YOLOV3 经典算法(一)
- Rasa 3.x 学习系列- Rasa - Issues 4635:Make Rasa X model pull interval configurable in local mode
- Rasa 3.x 学习系列- Rasa - Issues 4759:Training Luis data with luis_schema_version higher than 4.x.x will
- Rasa 3.x 学习系列- Rasa - Issues 4799 rasa interactive does not work without nlu data
- Rasa 3.x 学习系列- Rasa - Issues 4917 Support S3 namespaces when retrieving models from buckets
- Rasa 3.x 学习系列- Rasa - Issues 4925 “rasa init” will ask if user wants to train a model
- Rasa 3.x 学习系列- Rasa - Issues 4985 Fix errors during training in ResponseSelector学习笔记
- Rasa 3.x 学习系列- Rasa - Issues 4933 Improved error message that appears when an incorrect paramete学习笔记
- Rasa 3.x 学习系列- Rasa - Issues 4792 socket debug logs clog up debug feed学习笔记
- Rasa 3.x 学习系列- Rasa - Issues 4873 dispatcher.utter_message 学习笔记