您当前的位置: 首页 > 

韩曙亮

暂无认证

  • 5浏览

    0关注

    1068博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

【数字信号处理】序列傅里叶变换 ( 序列傅里叶变换与反变换 | 序列绝对可和 与 存在傅里叶变换之间的关系 | 序列傅里叶变换性质 )

韩曙亮 发布时间:2022-03-07 09:28:40 ,浏览量:5

文章目录
  • 一、序列傅里叶变换与反变换
  • 二、序列绝对可和 与 存在傅里叶变换之间的关系
  • 三、序列傅里叶变换性质

一、序列傅里叶变换与反变换

在上一篇博客 【数字信号处理】序列傅里叶变换 ( 序列傅里叶变换定义详细分析 | 证明单位复指数序列正交完备性 | 序列存在傅里叶变换的性质 | 序列绝对可和 → 序列傅里叶变换一定存在 ) 的介绍了如下内容 :

傅里叶变换 : 时域 " 离散非周期 " 信号 , 其频域就是 " 连续周期 " 的 , 其频域 可以 展开成一个 " 正交函数的无穷级数加权和 " , 如下公式

X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} X(ejω)=n=−∞∑+∞​x(n)e−jωn

傅里叶反变换 : 利用 " 正交函数 " 可以推导出 " 傅里叶反变换 " , 即 根据 傅里叶变换 推导 序列 ;

x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω k d ω x(n) = \cfrac{1}{2\pi} \int_{-\pi} ^\pi X( e^{j \omega } )e^{j \omega k} d \omega x(n)=2π1​∫−ππ​X(ejω)ejωkdω

二、序列绝对可和 与 存在傅里叶变换之间的关系

序列绝对可和 与 存在傅里叶变换 :

  • 如果 " x ( n ) x(n) x(n)序列绝对可和 " , 则 " 序列傅里叶变换 SFT " 一定存在 ;
  • 如果 " 序列傅里叶变换 SFT " 存在 , 不一定 " x ( n ) x(n) x(n)序列绝对可和 " ; 某些 " 非绝对可和序列 " , 引入 广义函数 δ ( ω ) \delta(\omega) δ(ω) 后 , 其 傅里叶变换也存在 ;

序列绝对可和可以表示成 :

∑ n = − ∞ + ∞ ∣ x ( n ) ∣ < ∞ \sum_{n=-\infty}^{+\infty}|x(n)| < \infty n=−∞∑+∞​∣x(n)∣

关注
打赏
1663594092
查看更多评论
立即登录/注册

微信扫码登录

0.0993s