Write a program which reads a sequence A of n elements and an integer M, and outputs “yes” if you can make M by adding elements in A, otherwise “no”. You can use an element only once.
You are given the sequence A and q questions where each question contains Mi.
InputIn the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers (Mi) are given.
OutputFor each question Mi, print yes or no.
Constraintsn ≤ 20 q ≤ 200 1 ≤ elements in A ≤ 2000 1 ≤ Mi ≤ 2000
Sample Input 15 1 5 7 10 21 8 2 4 17 8 22 21 100 35
Sample Output 1no no yes yes yes yes no no
NotesYou can solve this problem by a Burte Force approach. Suppose solve(p, t) is a function which checkes whether you can make t by selecting elements after p-th element (inclusive). Then you can recursively call the following functions:
solve(0, M) solve(1, M-{sum created from elements before 1st element}) solve(2, M-{sum created from elements before 2nd element}) …
The recursive function has two choices: you selected p-th element and not. So, you can check solve(p+1, t-A[p]) and solve(p+1, t) in solve(p, t) to check the all combinations.
For example, the following figure shows that 8 can be made by A[0] + A[2].
设solve(i,m)为“用第i个元素后面的元素能得出m时返回true”的函数,这样一来solve(i,m)就可以分解为solve(i+1,m)和solve(i,m-A[i])这两个更小的局部问题。
函数solve(i,m)中,m==0时代表数组元素相加能够得出指定整数。相反,m>0且i>=n时表示数组元素相加得不出指定整数。
只要局部问题solve(i+1,m)和solve(i,m-A[i])之中有一个为true,原问题solve(i,m)就为true。
code/* ^....0 ^ .1 ^1^ .. 01 1.^ 1.0 ^ 1 ^ ^0.1 1 ^ ^..^ 0. ^ 0^ .0 1 .^ .1 ^0 .........001^ .1 1. .111100....01^ 00 ^ 11^ ^1. .1^ 1.^ ^0 0^ .^ ^0..1 .1 1..^ 1 .0 ^ ^ 00. ^^0.^ ^ 0 ^^110.^ 0 0 ^ ^^^10.01 ^^ 10 1 1 ^^^1110.1 01 10 1.1 ^^^1111110 010 01 ^^ ^^^1111^1.^ ^^^ 10 10^ 0^ 1 ^^111^^^0.1^ 1....^ 11 0 ^^11^^^ 0.. ....1^ ^ ^ 1. 0^ ^11^^^ ^ 1 111^ ^ 0. 10 00 11 ^^^^^ 1 0 1. 0^ ^0 ^0 ^^^^ 0 0. 0^ 1.0 .^ ^^^^ 1 1 .0 ^.^ ^^ 0^ ^1 ^^^^ 0. ^.1 1 ^ 11 1. ^^^ ^ ^ ..^ ^..^ ^1 ^.^ ^^^ .0 ^.0 0..^ ^0 01 ^^^ .. 0..^ 1 .. .1 ^.^ ^^^ 1 ^ ^0001 ^ 1. 00 0. ^^^ ^.0 ^.1 . 0^. ^.^ ^.^ ^^^ ..0.0 1 .^^. .^ 1001 ^^ ^^^ . 1^ . ^ ^. 11 0. 1 ^ ^^ 0. 0 ^. 0 ^0 1 ^^^ 0. 0.^ 1. 0^ 0 .1 ^^^ .. .1 1. 00 . .1 ^^^ .. 1 1. ^. 0 .^ ^^ .. 0. 1. .^ . 0 . .1 1. 01 . . ^ 0 ^.^ 00 ^0 1. ^ 1 1 .0 00 . ^^^^^^ . .^ 00 01 .. 1. 00 10 1 ^ ^.1 00 ^. ^^^ .1 .. 00 .1 1..01 .. 1.1 00 1. ..^ 10 ^ 1^ 00 ^.1 0 1 1 .1 00 00 ^ 1 ^ . 00 ^.^ 10^ ^^ 1.1 00 00 10^ ..^ 1. ^. 1. 0 1 ^. 00 00 .^ ^ ^. ^ 1 00 ^0000^ ^ 01 1 0 ^. 00.0^ ^00000 1.00.1 11 . 1 0 1^^0.01 ^^^ 01 .^ ^ 1 1^^ ^.^ 1 1 0. .. 1 ^ 1 1 ^ ^ .0 1 ^ 1 .. 1.1 ^0.0 ^ 0 1..01^^100000..0^ 1 1 ^ 1 ^^1111^ ^^ 0 ^ ^ 1 1000^ .1 ^.^ . 00 .. 1.1 0. 0 1. . 1. .^ 1. 1 1. ^0 ^ . ^.1 00 01 ^.0 001. .^ */ // Virtual_Judge —— Exhaustive Search Aizu - ALDS1_5_A.cpp created by VB_KoKing on 2019-05-04:12. /* Procedural objectives: Variables required by the program: Procedural thinking: Functions required by the program: */ /* My dear Max said: "I like you, So the first bunch of sunshine I saw in the morning is you, The first gentle breeze that passed through my ear is you, The first star I see is also you. The world I see is all your shadow." FIGHTING FOR OUR FUTURE!!! */ #include using namespace std; int n,A[50]; //从输入值M中减去所选元素的递归函数 int solve(int i,int m) { if (m==0) return 1; if (i>=n) return 0; return solve(i+1,m)+solve(i+1,m-A[i]); } int main() { int q,M; cin>>n; for (int i = 0; i < n; i++) cin>>A[i]; cin>>q; for (int i = 0; i < q; i++) { cin>>M; if (solve(0,M)) cout<<"yes"<<endl; else cout<<"no"<<endl; } return 0; }