Due to recent rains, water has pooled in various places in Farmer John’s field, which is represented by a rectangle of N x M (1 <= N <= 100; 1 <= M <= 100) squares. Each square contains either water (‘W’) or dry land (’.’). Farmer John would like to figure out how many ponds have formed in his field. A pond is a connected set of squares with water in them, where a square is considered adjacent to all eight of its neighbors.
Given a diagram of Farmer John’s field, determine how many ponds he has.
Input-
Line 1: Two space-separated integers: N and M
-
Lines 2…N+1: M characters per line representing one row of Farmer John’s field. Each character is either ‘W’ or ‘.’. The characters do not have spaces between them.
- Line 1: The number of ponds in Farmer John’s field.
10 12
W........WW. .WWW.....WWW ....WW...WW. .........WW. .........W.. ..W......W.. .W.W.....WW. W.W.W.....W. .W.W......W. ..W.......W.Sample Output
3
HintOUTPUT DETAILS:
There are three ponds: one in the upper left, one in the lower left,and one along the right side.
Code/* ^....0 ^ .1 ^1^ .. 01 1.^ 1.0 ^ 1 ^ ^0.1 1 ^ ^..^ 0. ^ 0^ .0 1 .^ .1 ^0 .........001^ .1 1. .111100....01^ 00 ^ 11^ ^1. .1^ 1.^ ^0 0^ .^ ^0..1 .1 1..^ 1 .0 ^ ^ 00. ^^0.^ ^ 0 ^^110.^ 0 0 ^ ^^^10.01 ^^ 10 1 1 ^^^1110.1 01 10 1.1 ^^^1111110 010 01 ^^ ^^^1111^1.^ ^^^ 10 10^ 0^ 1 ^^111^^^0.1^ 1....^ 11 0 ^^11^^^ 0.. ....1^ ^ ^ 1. 0^ ^11^^^ ^ 1 111^ ^ 0. 10 00 11 ^^^^^ 1 0 1. 0^ ^0 ^0 ^^^^ 0 0. 0^ 1.0 .^ ^^^^ 1 1 .0 ^.^ ^^ 0^ ^1 ^^^^ 0. ^.1 1 ^ 11 1. ^^^ ^ ^ ..^ ^..^ ^1 ^.^ ^^^ .0 ^.0 0..^ ^0 01 ^^^ .. 0..^ 1 .. .1 ^.^ ^^^ 1 ^ ^0001 ^ 1. 00 0. ^^^ ^.0 ^.1 . 0^. ^.^ ^.^ ^^^ ..0.0 1 .^^. .^ 1001 ^^ ^^^ . 1^ . ^ ^. 11 0. 1 ^ ^^ 0. 0 ^. 0 ^0 1 ^^^ 0. 0.^ 1. 0^ 0 .1 ^^^ .. .1 1. 00 . .1 ^^^ .. 1 1. ^. 0 .^ ^^ .. 0. 1. .^ . 0 . .1 1. 01 . . ^ 0 ^.^ 00 ^0 1. ^ 1 1 .0 00 . ^^^^^^ . .^ 00 01 .. 1. 00 10 1 ^ ^.1 00 ^. ^^^ .1 .. 00 .1 1..01 .. 1.1 00 1. ..^ 10 ^ 1^ 00 ^.1 0 1 1 .1 00 00 ^ 1 ^ . 00 ^.^ 10^ ^^ 1.1 00 00 10^ ..^ 1. ^. 1. 0 1 ^. 00 00 .^ ^ ^. ^ 1 00 ^0000^ ^ 01 1 0 ^. 00.0^ ^00000 1.00.1 11 . 1 0 1^^0.01 ^^^ 01 .^ ^ 1 1^^ ^.^ 1 1 0. .. 1 ^ 1 1 ^ ^ .0 1 ^ 1 .. 1.1 ^0.0 ^ 0 1..01^^100000..0^ 1 1 ^ 1 ^^1111^ ^^ 0 ^ ^ 1 1000^ .1 ^.^ . 00 .. 1.1 0. 0 1. . 1. .^ 1. 1 1. ^0 ^ . ^.1 00 01 ^.0 001. .^ */ // Virtual_Judge —— Lake Counting POJ - 2386.cpp created by VB_KoKing on 2019-05-05:15. /* Procedural objectives: Variables required by the program: Procedural thinking: 从任意的W开始, 不停地把邻接的部分用.代替。 1次DFS后与初始的这个W连接的所有W就都被替换成了.,因此直到图中不在存在W位置,总共进行DFS的次数就是答案。 8个方向对应了8种状态转移,每个格子作为DFS的参数至多被调用一次,所以复杂度为O(8*N*M)。 Functions required by the program: */ /* My dear Max said: "I like you, So the first bunch of sunshine I saw in the morning is you, The first gentle breeze that passed through my ear is you, The first star I see is also you. The world I see is all your shadow." FIGHTING FOR OUR FUTURE!!! */ #include using namespace std; int N,M; char field[107][107]; void dfs(int x,int y) { field[x][y]='.'; for (int dx = -1; dx < 2; dx++) { for (int dy = -1; dy < 2; dy++) { int nx=x+dx,ny=y+dy; if (-1<nx&&nx<N+1&&-1<ny&&ny<M&&field[nx][ny]=='W') dfs(nx,ny); } } return; } void solve() { int res=0; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if (field[i][j]=='W') { dfs(i,j); res++; } } } cout<<res<<endl; } int main() { cin>>N>>M; for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) cin>>field[i][j]; solve(); return 0; }